Construction of a genetic linkage map of cigar tobacco (Nicotiana tabacum L.) based on SSR markers and comparative studies

https://doi.org/10.17221/121/2017-CJGPBCitation:Tong Z., Xiao B., Chen X., Fang D., Zhang Y., Huang C., Li Y. (2018): Construction of a genetic linkage map of cigar tobacco (Nicotiana tabacum L.) based on SSR markers and comparative studies. Czech J. Genet. Plant Breed., 54: 115-122.
supplementary materialdownload PDF

Genetic linkage maps representing the tobacco genome have been an important tool for breeding programs because of the elucidation of polygenic traits. We constructed a genetic linkage map of cigar tobacco (Nicotiana tabacum L.) based on an inter-type backcross population of 213 individuals and performed a comparative analysis with other published maps of dark tobacco and flue-cured tobacco. The map consisted of 562 SSR loci distributed on 24 tentative linkage groups and spanned a total length of 1341.18 cM with an average distance of 2.39 cM between adjacent markers. The comparative analysis revealed a Spearman correlation index of 0.93 for marker order conservation with the previously published maps constructed for different tobacco types. Approximately 91% of the SSR markers common to other inter-type maps were located in the same positions as in previous maps. The three maps exhibit good synteny in terms of the shared markers, which suggests that there might be no translocation variations between the genomes of the cigar, dark and flue-cured tobaccos. These results indicate the feasibility of generating a unique genetic map of preferred traits in cigar tobacco and that such mapping may be helpful for breeding programs because plants derived from different inter-type populations can be rapidly scanned using the markers associated with useful cigar traits

References:
Bindler Gregor, van der Hoeven Rutger, Gunduz Irfan, Plieske Jörg, Ganal Martin, Rossi Luca, Gadani Ferruccio, Donini Paolo (2007): A microsatellite marker based linkage map of tobacco. Theoretical and Applied Genetics, 114, 341-349  https://doi.org/10.1007/s00122-006-0437-5
 
Bindler Gregor, Plieske Jörg, Bakaher Nicolas, Gunduz Irfan, Ivanov Nikolai, Van der Hoeven Rutger, Ganal Martin, Donini Paolo (2011): A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theoretical and Applied Genetics, 123, 219-230  https://doi.org/10.1007/s00122-011-1578-8
 
Bombarely Aureliano, Rosli Hernan G., Vrebalov Julia, Moffett Peter, Mueller Lukas A., Martin Gregory B. (2012): A Draft Genome Sequence of Nicotiana benthamiana to Enhance Molecular Plant-Microbe Biology Research. Molecular Plant-Microbe Interactions, 25, 1523-1530  https://doi.org/10.1094/MPMI-06-12-0148-TA
 
Bourke P. M., Voorrips R. E., Visser R. G. F., Maliepaard C. (2015): The Double-Reduction Landscape in Tetraploid Potato as Revealed by a High-Density Linkage Map. Genetics, 201, 853-863  https://doi.org/10.1534/genetics.115.181008
 
Bratteler M., Lexer C., Widmer A. (2006): A genetic linkage map of Silene vulgaris based on AFLP markars. Gemome, 49: 320–327.
 
CAI Chang-Chun, CHAI Li-Guang, WANG Yi, XU Fang-Sen, ZHANG Jun-Jie, LIN Guo-Ping (2009): Construction of Genetic Linkage Map of Burley Tobacco (<I>Nicotiana tabacum</I> L.) and Genetic Dissection of Partial Traits. ACTA AGRONOMICA SINICA, 35, 1646-1654  https://doi.org/10.3724/SP.J.1006.2009.01646
 
Doğanlar Sami, Frary Amy, Daunay Marie-Christine, Huvenaars Koen, Mank Rolf, Frary Anne (2014): High resolution map of eggplant (Solanum melongena) reveals extensive chromosome rearrangement in domesticated members of the Solanaceae. Euphytica, 198, 231-241  https://doi.org/10.1007/s10681-014-1096-2
 
Edwards K. D., Fernandez-Pozo N., Drake-Stowe K., Humphry M., Evans A. D., Bombarely A., Allen F., Hurst R., White B., Kernodle S. P., Bromley J. R., Sanchez-Tamburrino J. P., Lewis R. S., Mueller L. A. (2017): A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics, 18, -  https://doi.org/10.1186/s12864-017-3791-6
 
Gerstel D.U., Burns J.A., Burk L.G. (1979): Cytoplasmic male sterility in Nicotiana, restoration of fertility, and the nucleolus. Genetics, 89: 157–169.
 
Gerstel D.U., Burns J.A., Sand S.A. (1980): Cytogenetics of flower modification of a cytoplasmic male-sterile tobacco. Genetics, 96: 223–235.
 
Gong Daping, Huang Long, Xu Xiuhong, Wang Chuanyi, Ren Min, Wang Chunkai, Chen Mingli (2016): Construction of a high-density SNP genetic map in flue-cured tobacco based on SLAF-seq. Molecular Breeding, 36, -  https://doi.org/10.1007/s11032-016-0514-7
 
Goodspeed T.H. (1954): The Genus Nicotiana. Waltham, Chronica Botanica Company.
 
Lu XiuPing, Gui YiJie, Xiao BingGuang, Li YongPing, Tong ZhiJun, Liu Yun, Bai XueFei, Wu WeiRen, Xia Ling, Huttner Eric, Kilian Adrzej, Fan LongJiang (2013): Development of DArT markers for a linkage map of flue-cured tobacco. Chinese Science Bulletin, 58, 641-648  https://doi.org/10.1007/s11434-012-5453-z
 
Lyttle Terrence W. (1991): Segregation Distorters. Annual Review of Genetics, 25, 511-581  https://doi.org/10.1146/annurev.ge.25.120191.002455
 
Mantel N. (1967): The detection of disease clustering and a generalized regression approach. Cancer Research, 27: 209–220.
 
Roder M.S., Korzun V., Wendehake K., Plaschke J., Tixer M.H. (1998): A microsatellite map of wheat. Genetics, 149: 2007–2023.
 
Rohlf F.J. (1989): NTSYS-PC: Numerical Taxonomy and Multivariate Analysis System. New York, Exeter Publisher.
 
Shirasawa K., Isobe S., Hirakawa H., Asamizu E., Fukuoka H., Just D., Rothan C., Sasamoto S., Fujishiro T., Kishida Y., Kohara M., Tsuruoka H., Wada T., Nakamura Y., Sato S., Tabata S. (2010): SNP Discovery and Linkage Map Construction in Cultivated Tomato. DNA Research, 17, 381-391  https://doi.org/10.1093/dnares/dsq024
 
Sierro Nicolas, van Oeveren Jan, van Eijk Michiel J. T., Martin Florian, Stormo Keith E., Peitsch Manuel C., Ivanov Nikolai V. (2013): Whole genome profiling physical map and ancestral annotation of tobacco Hicks Broadleaf. The Plant Journal, 75, 880-889  https://doi.org/10.1111/tpj.12247
 
Sierro Nicolas, Battey James N.D., Ouadi Sonia, Bakaher Nicolas, Bovet Lucien, Willig Adrian, Goepfert Simon, Peitsch Manuel C., Ivanov Nikolai V. (2014): The tobacco genome sequence and its comparison with those of tomato and potato. Nature Communications, 5, -  https://doi.org/10.1038/ncomms4833
 
Tadmor Y., Zamir D., Ladizinsky G. (1987): Genetic mapping of an ancient translocation in the genus Lens. Theoretical and Applied Genetics, 73, 883-892  https://doi.org/10.1007/BF00289394
 
Tong Zhijun, Yang Zemao, Chen Xuejun, Jiao Fangchan, Li Xuying, Wu Xingfu, Gao Yulong, Xiao Bingguang, Wu Weiren (2012): Large-scale development of microsatellite markers in Nicotiana tabacum and construction of a genetic map of flue-cured tobacco. Plant Breeding, 131, 674-680  https://doi.org/10.1111/j.1439-0523.2012.01984.x
 
Tong Zhijun, Xiao Bingguang, Jiao Fangchan, Fang Dunhuang, Zeng Jianmin, Wu Xingfu, Chen Xuejun, Yang Jiankang, Li Yongping (2016): Large-scale development of SSR markers in tobacco and construction of a linkage map in flue-cured tobacco. Breeding Science, 66, 381-390  https://doi.org/10.1270/jsbbs.15129
 
Van Ooijen J.W. (2006): JoinMap® 4.0. Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Wageningen, Kyazma B.V.
 
Vontimitta Vijay, Lewis Ramsey S. (2012): Mapping of quantitative trait loci affecting resistance to Phytophthora nicotianae in tobacco (Nicotiana tabacum L.) line Beinhart-1000. Molecular Breeding, 29, 89-98  https://doi.org/10.1007/s11032-010-9528-8
 
Voorrips R. E. (): MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity, 93, 77-78  https://doi.org/10.1093/jhered/93.1.77
 
Wernsman E.A. (1987): Tobacco. New York, Macmillan.
 
Xue Shulin, Zhang Zhengzhi, Lin Feng, Kong Zhongxin, Cao Yong, Li Chunjun, Yi Hongying, Mei Mingfeng, Zhu Huilan, Wu Jizhong, Xu Haibin, Zhao Dongmei, Tian Dagang, Zhang Caiqin, Ma Zhengqiang (2008): A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theoretical and Applied Genetics, 117, 181-189  https://doi.org/10.1007/s00122-008-0764-9
 
Zhang Xiao-fen, Sun Hong-he, Xu Yong, Chen Bin, Yu Shuan-cang, Geng San-sheng, Wang Qian (2016): Development of a large number of SSR and InDel markers and construction of a high-density genetic map based on a RIL population of pepper (Capsicum annuum L.). Molecular Breeding, 36, -  https://doi.org/10.1007/s11032-016-0517-4
 
supplementary materialdownload PDF

© 2020 Czech Academy of Agricultural Sciences