Callus induction and frond regeneration in Spirodela polyrhiza Y. (2016): Callus induction and frond regeneration in Spirodela polyrhiza. Czech J. Genet. Plant Breed., 52: 114-119.
download PDF
Spirodela polyrhiza belongs to the family Lemnaceae (duckweed), which is a group of small aquatic plants offering an attractive plant expression system for the production of recombinant protein. No frond regeneration protocol has been established in this species yet. An efficient protocol for plant regeneration through organogenesis has been developed in Spirodela polyrhiza for the first time. Calli were successfully induced from 92% of explants on Murashige and Skoog (MS) medium with 10 μM naphthaleneacetic acid, 2 μM thidiazuron, 1μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 3% sucrose. MS medium containing 1% (m/v) sorbitol and 1 µM 2,4-D supported long lasting growth (at least 5 months) of 98% of calli. Plants regenerated from 92% of calli on Schenk and Hildebrandt (SH) medium with 10 μM zeatin and 1% (m/v) sucrose. The protocol for frond regeneration could be a good basis for transgenic engineering of S. polyrhiza.
Burns Mitchell, Hanson Mark L., Prosser Ryan S., Crossan Angus N., Kennedy Ivan R. (2015): Growth Recovery of Lemna gibba and Lemna minor Following a 7-Day Exposure to the Herbicide Diuron. Bulletin of Environmental Contamination and Toxicology, 95, 150-156
Chhabra Gulshan, Chaudhary Darshna, Sainger Manish, Jaiwal Pawan K. (2011): Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. Physiology and Molecular Biology of Plants, 17, 129-136
Cox K.M., Sterling J.D., Regan J.T., Gasdaska J.R., Frantz K.K., Peele C.G., Black A., Passmore D., Moldovan-Loomis C., Srinivasan M., Cuison S., Cardarelli, P.M., Dickey L.F. ( 2006): Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nature Biotechnology, 24: 1591–1597.
Demirezen Dilek, Aksoy Ahmet, Uruç Kadiriye (2007): Effect of population density on growth, biomass and nickel accumulation capacity of Lemna gibba (Lemnaceae). Chemosphere, 66, 553-557
Khvatkov Pavel, Chernobrovkina Mariya, Okuneva Anna, Shvedova Anastasiya, Chaban Inna, Dolgov Sergey (2015): Callus induction and regeneration in Wolffia arrhiza (L.) Horkel ex Wimm. Plant Cell, Tissue and Organ Culture (PCTOC), 120, 263-273
Kuehdorf Katja, Jetschke Gottfried, Ballani Ludwig, Appenroth Klaus-J. (2014): The clonal dependence of turion formation in the duckweed Spirodela polyrhiza -an ecogeographical approach. Physiologia Plantarum, 150, 46-54
Li J., Jain M., Vunsh R., Vishnevetsky J., Hanania U., Flaishman M., Perl A., Edelman M. (2004): Callus induction and regeneration in Spirodela and Lemna. Plant Cell Reports, 22, 457-464
Moon H.K., Stomp A.M. (1997): Effects of medium components and light on callus induction, growth, and frond regeneration in Lemna gibba (Duckweed). In Vitro Cellular & Developmental Biology – Plant, 33: 20–25.
Moon Heung-Kyu, Yang Moon-Sik (2002): Nodular somatic embryogenesis and frond regeneration in duckweed,Lemna gibba G3. Journal of Plant Biology, 45, 154-160
Murashige Toshio, Skoog Folke (1962): A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 473-497
Nguyen Long V., Cox Kevin M., Ke John S., Peele Charles G., Dickey Lynn F. (2012): Genetic engineering of a Lemna isoleucine auxotroph. Transgenic Research, 21, 1071-1083
Oláh Viktor, Hepp Anna, Mészáros Ilona (2015): Comparative study on the sensitivity of turions and active fronds of giant duckweed (Spirodela polyrhiza (L.) Schleiden) to heavy metal treatments. Chemosphere, 132, 40-46
Rival Sandrine, Wisniewski Jean-Pierre, Langlais Audrey, Kaplan Hélène, Freyssinet Georges, Vancanneyt Guy, Vunsh Ron, Perl Avihai, Edelman Marvin (2008): Spirodela (duckweed) as an alternative production system for pharmaceuticals: a case study, aprotinin. Transgenic Research, 17, 503-513
Stomp A.M. (2005): The duckweeds: a valuable plant for biomanufacturing. Biotechnology Annual Review, 11: 69–99.
Tang Jie, Zhang Fei, Cui Weihua, Ma Jiong (2014): Genetic structure of duckweed population of Spirodela, Landoltia and Lemna from Lake Tai, China. Planta, 239, 1299-1307
Tang Wei, Newton Ronald J., Charles Thomas M. (2006): Plant regeneration through multiple adventitious shoot differentiation from callus cultures of slash pine (Pinus elliottii). Journal of Plant Physiology, 163, 98-101
Vunsh Ron, Li Jihong, Hanania Uri, Edelman Marvin, Flaishman Moshe, Perl Avihai, Wisniewski Jean-Pierre, Freyssinet Georges (2007): High expression of transgene protein in Spirodela. Plant Cell Reports, 26, 1511-1519
Wang Wenqin, Wu Yongrui, Messing Joachim, Lin Senjie (2012): The Mitochondrial Genome of an Aquatic Plant, Spirodela polyrhiza. PLoS ONE, 7, e46747-
Wang W., Haberer G., Gundlach H., Gläßer C., Nussbaumer T., Luo M.C., Lomsadze A., Borodovsky M., Kerstetter R.A., Shanklin J., Byrant D.W., Mockler T.C., Appenroth K.J., Grimwood J., Jenkins J., Chow J., Choi C., Adam C., Cao X.-H., Fuchs J., Schubert I., Rokhsar D., Schmutz J., Michael T.P., Mayer K.F.X., Messing J (2014): The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nature Communications, 5, -
Wang Wenguo, Yang Chuang, Tang Xiaoyu, Zhu Qili, Pan Ke, Cai Denggao, Hu Qichun, Ma Danwei (2015): Carbon and energy fixation of great duckweed Spirodela polyrhiza growing in swine wastewater. Environmental Science and Pollution Research, 22, 15804-15811
Xu Xing-Jian, Sun Ji-Quan, Nie Yong, Wu Xiao-Lei (2015): Spirodela polyrhiza stimulates the growth of its endophytes but differentially increases their fenpropathrin-degradation capabilities. Chemosphere, 125, 33-40
download PDF

© 2020 Czech Academy of Agricultural Sciences