Burns Mitchell, Hanson Mark L., Prosser Ryan S., Crossan Angus N., Kennedy Ivan R. (2015): Growth Recovery of Lemna gibba and Lemna minor Following a 7-Day Exposure to the Herbicide Diuron. Bulletin of Environmental Contamination and Toxicology, 95, 150-156
https://doi.org/10.1007/s00128-015-1575-8
Chhabra Gulshan, Chaudhary Darshna, Sainger Manish, Jaiwal Pawan K. (2011): Genetic transformation of Indian isolate of Lemna minor mediated by Agrobacterium tumefaciens and recovery of transgenic plants. Physiology and Molecular Biology of Plants, 17, 129-136
https://doi.org/10.1007/s12298-011-0059-5
Cox K.M., Sterling J.D., Regan J.T., Gasdaska J.R., Frantz K.K., Peele C.G., Black A., Passmore D., Moldovan-Loomis C., Srinivasan M., Cuison S., Cardarelli, P.M., Dickey L.F. ( 2006): Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nature Biotechnology, 24: 1591–1597.
Demirezen Dilek, Aksoy Ahmet, Uruç Kadiriye (2007): Effect of population density on growth, biomass and nickel accumulation capacity of Lemna gibba (Lemnaceae). Chemosphere, 66, 553-557
https://doi.org/10.1016/j.chemosphere.2006.05.045
Khvatkov Pavel, Chernobrovkina Mariya, Okuneva Anna, Shvedova Anastasiya, Chaban Inna, Dolgov Sergey (2015): Callus induction and regeneration in Wolffia arrhiza (L.) Horkel ex Wimm. Plant Cell, Tissue and Organ Culture (PCTOC), 120, 263-273
https://doi.org/10.1007/s11240-014-0603-4
Kuehdorf Katja, Jetschke Gottfried, Ballani Ludwig, Appenroth Klaus-J. (2014): The clonal dependence of turion formation in the duckweed
Spirodela polyrhiza -an ecogeographical approach. Physiologia Plantarum, 150, 46-54
https://doi.org/10.1111/ppl.12065
Li J., Jain M., Vunsh R., Vishnevetsky J., Hanania U., Flaishman M., Perl A., Edelman M. (2004): Callus induction and regeneration in Spirodela and Lemna. Plant Cell Reports, 22, 457-464
https://doi.org/10.1007/s00299-003-0724-4
Moon H.K., Stomp A.M. (1997): Effects of medium components and light on callus induction, growth, and frond regeneration in Lemna gibba (Duckweed). In Vitro Cellular & Developmental Biology – Plant, 33: 20–25.
Moon Heung-Kyu, Yang Moon-Sik (2002): Nodular somatic embryogenesis and frond regeneration in duckweed,Lemna gibba G3. Journal of Plant Biology, 45, 154-160
https://doi.org/10.1007/BF03030308
Murashige Toshio, Skoog Folke (1962): A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 473-497
https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Nguyen Long V., Cox Kevin M., Ke John S., Peele Charles G., Dickey Lynn F. (2012): Genetic engineering of a Lemna isoleucine auxotroph. Transgenic Research, 21, 1071-1083
https://doi.org/10.1007/s11248-012-9594-2
Oláh Viktor, Hepp Anna, Mészáros Ilona (2015): Comparative study on the sensitivity of turions and active fronds of giant duckweed (Spirodela polyrhiza (L.) Schleiden) to heavy metal treatments. Chemosphere, 132, 40-46
https://doi.org/10.1016/j.chemosphere.2015.01.050
Rival Sandrine, Wisniewski Jean-Pierre, Langlais Audrey, Kaplan Hélène, Freyssinet Georges, Vancanneyt Guy, Vunsh Ron, Perl Avihai, Edelman Marvin (2008): Spirodela (duckweed) as an alternative production system for pharmaceuticals: a case study, aprotinin. Transgenic Research, 17, 503-513
https://doi.org/10.1007/s11248-007-9123-x
Stomp A.M. (2005): The duckweeds: a valuable plant for biomanufacturing. Biotechnology Annual Review, 11: 69–99.
Tang Jie, Zhang Fei, Cui Weihua, Ma Jiong (2014): Genetic structure of duckweed population of Spirodela, Landoltia and Lemna from Lake Tai, China. Planta, 239, 1299-1307
https://doi.org/10.1007/s00425-014-2053-y
Tang Wei, Newton Ronald J., Charles Thomas M. (2006): Plant regeneration through multiple adventitious shoot differentiation from callus cultures of slash pine (Pinus elliottii). Journal of Plant Physiology, 163, 98-101
https://doi.org/10.1016/j.jplph.2005.04.030
Vunsh Ron, Li Jihong, Hanania Uri, Edelman Marvin, Flaishman Moshe, Perl Avihai, Wisniewski Jean-Pierre, Freyssinet Georges (2007): High expression of transgene protein in Spirodela. Plant Cell Reports, 26, 1511-1519
https://doi.org/10.1007/s00299-007-0361-4
Wang Wenqin, Wu Yongrui, Messing Joachim, Lin Senjie (2012): The Mitochondrial Genome of an Aquatic Plant, Spirodela polyrhiza. PLoS ONE, 7, e46747-
https://doi.org/10.1371/journal.pone.0046747
Wang W., Haberer G., Gundlach H., Gläßer C., Nussbaumer T., Luo M.C., Lomsadze A., Borodovsky M., Kerstetter R.A., Shanklin J., Byrant D.W., Mockler T.C., Appenroth K.J., Grimwood J., Jenkins J., Chow J., Choi C., Adam C., Cao X.-H., Fuchs J., Schubert I., Rokhsar D., Schmutz J., Michael T.P., Mayer K.F.X., Messing J (2014): The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nature Communications, 5, -
https://doi.org/10.1038/ncomms4311
Wang Wenguo, Yang Chuang, Tang Xiaoyu, Zhu Qili, Pan Ke, Cai Denggao, Hu Qichun, Ma Danwei (2015): Carbon and energy fixation of great duckweed Spirodela polyrhiza growing in swine wastewater. Environmental Science and Pollution Research, 22, 15804-15811
https://doi.org/10.1007/s11356-015-4778-y
Xu Xing-Jian, Sun Ji-Quan, Nie Yong, Wu Xiao-Lei (2015): Spirodela polyrhiza stimulates the growth of its endophytes but differentially increases their fenpropathrin-degradation capabilities. Chemosphere, 125, 33-40
https://doi.org/10.1016/j.chemosphere.2014.12.084