Changes in the expression of CrFTA, the Catharanthus roseus farnesyltransferase α-subunit gene, in response to a Candidatus Liberibacter asiaticus infection

https://doi.org/10.17221/13/2020-CJGPBCitation:

Li Y., Yu Q. (2021): Changes in the expression of CrFTA, the Catharanthus roseus farnesyltransferase α-subunit gene, in response to a Candidatus Liberibacter asiaticus infection. Czech J. Genet. Plant Breed., 57: 36−42.

download PDF

The farnesyltransferase α-subunit (FTA) may be involved in the regulation of defence responses against pathogens in plants. In this study, this gene was amplified from Catharanthus roseus (CrFTA gene). The cDNA was found to be 1 403 bp long, and encodes a putative protein of 331 amino acids that contains a conserved PPTA motif. The phylogenetic analysis showed that the sequence of CrFTA is the most similar to that from Coffea canephora. The qRT-PCR assays indicated that CrFTA is expressed in the leaves, stems, and roots. During a Candidatus Liberibacter asiaticus (Ca. L. asiaticus) infection, the CrFTA expression levels significantly increased and reached 18-fold that measured in the control group, after which its expression decreased gradually from 22 days after top-grafting (DAT) to the end of the experiment. Spray application of Manumycin A (ManuA), a specific inhibitor of farnesyltransferase, on the leaves of C. roseus plants caused a significant decrease in the CrFTA expression and a significant increase in the Ca. L. asiaticus positivity percentage after top-grafting with the Ca. L. asiaticus-infected shoots compared with the groups not treated with ManuA. Furthermore, ABA had no significant effect on the relative expression of CrFTA and the number of Ca. L. asiaticus-positive plants. These results suggest that CrFTA most likely plays a role in mediating the tolerance to a Ca. L. asiaticus infection in C. roseus.

References:
Cao F.Y., Yoshioka K., Desveaux D. (2011): The roles of ABA in plant-pathogen interactions. Journal of Plant Research, 124: 489–499. https://doi.org/10.1007/s10265-011-0409-y
 
Charng W.L., Yamamoto S., Jaiswal M., Bayat V., Xiong B., Zhang K., Sandoval H., David G., Gibbs S., Lu H.C., Chen K., Giagtzoglou N., Bellen H.J. (2014): Drosophila Tempura, a novel protein prenyltransferase α subunit, regulates notch signaling via Rab1 and Rab11. PLoS Biology, 12: e1001777. https://doi.org/10.1371/journal.pbio.1001777
 
Cutler S., Ghassemian M., Bonetta D., Cooney S., McCourt P. (1996): A protein farnesyltransferase involved in abscisic acid signal transduction in Arabidopsis, Science, 273: 1239–1241. https://doi.org/10.1126/science.273.5279.1239
 
Deng X., Gao Y., Chen J., Pu X., Kong W., Li H. (2012): Current situation of ‘Candidatus Liberibacter asiaticus’ in Guangdong, China, where citrus Huanglongbing was first described. Journal of Integrative Agriculture, 11: 424–429. https://doi.org/10.1016/S2095-3119(12)60027-6
 
Ding F., Duan Y., Paul C., Brlansky R.H., Hartung J.S. (2015): Localization and distribution of ‘Candidatus Liberibacter asiaticus’ in citrus and periwinkle by direct tissue blot immuno assay with an anti-OmpA polyclonal antibody. PLoS One, 10: e0123939. https://doi.org/10.1371/journal.pone.0123939
 
Goritschnig S., Weihmann T., Zhang Y., Fobert P., McCourt P., Li X. (2008): A novel role for protein farnesylation in plant innate immunity. Plant Physiology, 148: 348–357. https://doi.org/10.1104/pp.108.117663
 
Islam M.S., Glynn J.M., Bai Y., Duan Y.P., Coletta-Filho H.D., Kuruba G., Civerolo E.L., Lin H. (2012): Multilocus microsatellite analysis of ‘Candidatus Liberibacter asiaticus’ associated with citrus Huanglongbing worldwide. BMC Microbiology, 12: 39. https://doi.org/10.1186/1471-2180-12-39
 
Izard T. (2002): The crystal structures of phosphopantetheine adenylyltransferase with bound substrates reveal the enzyme’s catalytic mechanism. Journal of Molecular Biology, 315: 487–495. https://doi.org/10.1006/jmbi.2001.5272
 
Jiang C.J., Shimono M., Sugano S., Kojima M., Yazawa K., Yoshida R., Inoue H., Hayashi N., Sakakibara H., Takatsuji H. (2010): Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Molecular Plant-Microbe Interactions, 23: 791–798. https://doi.org/10.1094/MPMI-23-6-0791
 
Li Y., Xu M.R., Dai Z.H., Deng X.L. (2018): Distribution pattern and titer of ‘Candidatus Liberibacter asiaticus’ in periwinkle (Catharanthus roseus). Journal of Integrative Agriculture, 17: 2501–2508. https://doi.org/10.1016/S2095-3119(18)61918-5
 
Li Y., Yu Q.H., Wang B.F., Chen L.T. (2019): Differential expression of Isochorismate synthase in Catharanthus roseus during ‘Candidatus Liberibacter asiaticus’ infection. Tropical Plant Pathology, 44: 363–370. https://doi.org/10.1007/s40858-019-00287-y
 
Livak K.J., Schmittgen T.D. (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT Method. Methods, 25: 402–408. https://doi.org/10.1006/meth.2001.1262
 
Nambara E., McCourt P. (1999): Protein farnesylation in plants: a greasy tale. Current Opinion in Plant Biology, 2: 388–392. https://doi.org/10.1016/S1369-5266(99)00010-2
 
Running M.P., Lavy M., Sternberg H., Galichet A., Gruissem W., Hake S., Ori N., Yalovsky S. (2004): Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proceedings of the National Academy of Sciences of the United States of America, 101: 7815–7820. https://doi.org/10.1073/pnas.0402385101
 
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. (2011): MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28: 2731–2739. https://doi.org/10.1093/molbev/msr121
 
Wang N., Trivedi P. (2013): Citrus huanglongbing: a newly relevant disease presents unprecedented challenges. Phytopathology, 103: 652–665. https://doi.org/10.1094/PHYTO-12-12-0331-RVW
 
Wang Y., Beaith M., Chalifoux M., Ying J., Uchacz T., Sarvas C., Griffiths R., Kuzma M., Wan J., Huang Y. (2009): Shoot-specific down-regulation of protein farnesyltransferase (alpha-subunit) for yield protection against drought in canola. Molecular Plant, 2: 191–200. https://doi.org/10.1093/mp/ssn088
 
Ying W., Sepp-Lorenzino L., Cai K., Coleman P.S. (1994): Photoaffinity-labeling peptide substrates for farnesyl-protein transferase and the intersubunit location of the active site. Journal of Biological Chemistry, 269: 470–477. https://doi.org/10.1016/S0021-9258(17)42374-X
 
Zhang M., Duan Y., Zhou L., Turechek W.W., Stover E., Powell C.A. (2010): Screening molecules for control of citrus Huanglongbing using an optimized regeneration system for ‘Candidatus Liberibacter asiaticus’-infected Periwinkle (Catharanthus roseus) Cuttings. Phytopathology, 100: 239–245. https://doi.org/10.1094/PHYTO-100-3-0239
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti