Marker-trait associations of yield related traits in bread wheat (Triticum aestivum L.) under a semi-arid climate S., Kharrat M., ben Younes M. (2019): Marker-trait associations of yield related traits in bread wheat (Triticum aestivum L.) under a semi-arid climate. Czech J. Genet. Plant Breed., 55: 138-145.
supplementary materialdownload PDF

Identifying QTLs (quantitative trait loci) that control yield related traits under a stressed environment is very useful for marker-assisted selection (MAS). Marker-trait associations (MTA) for several agro-morphological traits were performed with 130 Tunisian and exotic spring bread wheat (Triticum aestivum L.) accessions under a semi-arid climate in El Kef, Tunisia. Grain yield and other important traits were evaluated. A population structural analysis identified two sub populations. In total, 29 MTAs were detected at –log P ≥ 3 using an MLM (mixed linear model), and only 5 MTAs with –log P ≥ 4. The locus on chromosome 4A was detected to control the heading date accounting for up to 22% of the trait variance. Two other loci located on chromosomes 3B and 7B were found to be stable during the two cropping seasons and have a pleiotropic effect on the heading date, yield, internodes length and grain per spike. These two regions are candidates for further genetic analysis.


Pacheco Á., Rodríguez F., Alvarado G., Vargas M., López M., Crossa J., Burgueño J. (2016): GEA-R (Genotype × Environment Analysis with R for Windows). Version 4.0, Mexico, CIMMYT.
Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y., Buckler E.S. (2007): TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23: 2633–2635.
Cavanagh C.R., Chao S., Wang S., Huang B.E., Stephen S., Kiani S., Forrest K., Saintenac C., Brown-Guedira G.L., Akhunova A., See D., Bai G., Pumphrey M., Tomar L., Wong D., Kong S., Reynolds M., da Silva M.L., Bockelman H., Talbert L., Anderson J.A., Dreisigacker S., Baen-ziger S., Carter A., Korzun V., Morrell P.L., Dubcovsky J., Morell M.K., Sorrells M.E., Hayden M.J., Akhunov E. (2013): Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the USA, 110: 8057–8062.
Cui F., Li J., Ding A., Zhao C., Wang L., Wang X., Li S., Bao Y., Li X., Feng D., Kong L., Wang H. (2011): Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theoretical and Applied Genetics, 122: 1517–1536.
del Pozo A., Castillo D., Inostroza L., Matus I., Mendez A.M., Morcuende R. (2012): Physiological and yield responses of recombinant chromosome substitution lines of barley to terminal drought in a Mediterranean-type environment. Annals of Applied Biology, 160: 157–167.
Evanno G., Regnaut S., Goudet J. (2005): Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14: 2611–2620.
Houston K., Russell J., Schreiber M., Halpin C., Oakey H., Washington J. M., Booth A., Shirley N., Burton R.A., Fincher G.B., Waugh R. (2014): A genome wide association scan for (1,3; 1,4)-beta-glucan content in the grain of contemporary 2-row spring and winter barleys. BMC Genomics, 15: 907.
Lê S., Josse J., Husson F. (2008): FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25: 1–18.
Paliwal R., Roder M.S., Kumar U., Srivastava J.P., Joshi A.K. (2012): QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theoretical and Applied Genetics, 125: 561–575.
Pánková K., Milec Z., Simmonds J., Leverington-Waite M., Fish L., Snape J. W. (2008): Genetic mapping of a new flowering time gene on chromosome 3B of wheat. Euphytica, 164: 779–787.
Pritchard J.K., Stephens M., Donnelly P. (2000): Inference of population structure using multilocus genotype data. Genetics, 155: 945–959.
Qaseem M.F., Qureshi R., Muqaddasi Q.H., Shaheen H., Kousar R., Roder M.S. (2018): Genome-wide association mapping in bread wheat subjected to independent and combined high temperature and drought stress. PLOS ONE, 13: e0199121
Quarrie S.A., Steed A., Calestani C., Semikhodskii A., Lebreton C., Chinoy C., Steele N., Pljevljakusic D., Waterman E., Weyen J., Schondelmaier J., Habash D.Z., Farmer P., Saker L., Clarkson D.T., Abugalieva A., Yessimbekova M., Turuspekov Y., Abugalieva S., Tuberosa R., Sanguineti M.C., Hollington P.A., Aragues R., Royo A., Dodig D. (2005): A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theoretical and Applied Genetics, 110: 865–880.
Sadeque A., Turner M.A. (2010): QTL analysis of plant height in hexaploid wheat doubled haploid population. Thai Journal of Agricultural Science, 43: 91–96.
Tadesse W., Ogbonnaya F.C., Jighly A., Sanchez-Garcia M., Sohail Q., Rajaram S., Baum M. (2015): Genome-wide association mapping of yield and grain quality traits in winter wheat genotypes. PLOS ONE, 10: e0141339.
Wang S.C., Wong D.B., Forrest K., Allen A., Chao S.M., Huang B.E., Maccaferri M., Salvi S., Milner S.G., Cattivelli L., Mastrangelo A.M., Whan A., Stephen S., Barker G., Wieseke R., Plieske J., Lillemo M., Mather D., Appels R., Dolferus R., Brown-Guedira G., Korol A., Akhunova A.R., Feuillet C., Salse J., Morgante M., Pozniak C., Luo M.C., Dvorak J., Morell M., Dubcovsky J., Ganal M., Tuberosa R., Lawley C., Mikoulitch I., Cavanagh C., Edwards K.J., Hayden M., Akhunov E. (2014): Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnology Journal, 12: 787–796.
Wehner G.G., Balko C.C., Enders M.M., Humbeck K.K., Ordon F.F. (2015): Identification of genomic regions involved in tolerance to drought stress and drought stress induced leaf senescence in juvenile barley. BMC Plant Biology, 15: 125.
Zanke C., Ling J., Plieske J., Kollers S., Ebmeyer E., Korzun V., Argillier O., Stiewe G., Hinze M., Beier S., Ganal M.W., Roder M.S. (2014a): Genetic architecture of main effect QTL for heading date in European winter wheat. Frontiers in Plant Sciences, 5: 217.
Zanke C.D., Ling J., Plieske J., Kollers S., Ebmeyer E., Korzun V., Argillier O., Stiewe G., Hinze M., Neumann K., Ganal M.W., Roder M.S. (2014b): Whole genome association mapping of plant height in winter wheat (Triticum aestivum L.). PLOS ONE, 9: e113287.
supplementary materialdownload PDF

© 2020 Czech Academy of Agricultural Sciences