Ashley M. K. (2005): Plant responses to potassium deficiencies: a role for potassium transport proteins. Journal of Experimental Botany, 57, 425-436
https://doi.org/10.1093/jxb/erj034
Cheong Yong Hwa, Pandey Girdhar K., Grant John J., Batistic Oliver, Li Legong, Kim Beom-Gi, Lee Sung-Chul, Kudla Jörg, Luan Sheng (2007): Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. The Plant Journal, 52, 223-239
https://doi.org/10.1111/j.1365-313X.2007.03236.x
Cherel I., Lefoulon C., Boeglin M., Sentenac H. (): Molecular mechanisms involved in plant adaptation to low K+ availability. Journal of Experimental Botany, 65, 833-848
https://doi.org/10.1093/jxb/ert402
Cuéllar Teresa, Pascaud François, Verdeil Jean-Luc, Torregrosa Laurent, Adam-Blondon Anne-Françoise, Thibaud Jean-Baptiste, Sentenac Hervé, Gaillard Isabelle (2010): A grapevine Shaker inward K
+ channel activated by the calcineurin B-like calcium sensor 1âprotein kinase CIPK23 network is expressed in grape berries under drought stress conditions. The Plant Journal, 61, 58-69
https://doi.org/10.1111/j.1365-313X.2009.04029.x
Deng X.M., Hu W., Wei S.Y., Zhou S.Y., Zhang F., Han J.P., Chen L.H., Li Y., Feng J.L., Fang B., Luo Q.C., Li S.S., Liu Y.Y., Yang G.X., He G.Y. (2013a): TaCIPK29, a CBL-Interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS ONE, 8: e69881.
Deng X.M., Zhou S.Y., Hu W., Feng J.L., Zhang F., Chen L.H., Huang C., Luo Q.C., He Y.Z., Yang G.X., He G.Y. (2013b): Ectopic expression of wheat TaCIPK14, encoding a calcineurin B-like protein-interacting protein kinase, confers salinity and cold tolerance in tobacco. Physiologia Plantarum, 149: 367–377.
He Liangrong, Yang Xiyan, Wang Lichen, Zhu Longfu, Zhou Ting, Deng Jinwu, Zhang Xianlong (2013): Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochemical and Biophysical Research Communications, 435, 209-215
https://doi.org/10.1016/j.bbrc.2013.04.080
Hirsch R. E. (): A Role for the AKT1 Potassium Channel in Plant Nutrition. Science, 280, 918-921
https://doi.org/10.1126/science.280.5365.918
(1985): A Simple and General Method for Transferring Genes into Plants. Science, 227, 1229-1231
https://doi.org/10.1126/science.227.4691.1229
LEIGH R. A., WYN JONES R. G. (1984): A HYPOTHESIS RELATING CRITICAL POTASSIUM CONCENTRATIONS FOR GROWTH TO THE DISTRIBUTION AND FUNCTIONS OF THIS ION IN THE PLANT CELL. New Phytologist, 97, 1-13
https://doi.org/10.1111/j.1469-8137.1984.tb04103.x
Li J., Long Y., Qi G.-N., Li J., Xu Z.-J., Wu W.-H., Wang Y. (): The Os-AKT1 Channel Is Critical for K+ Uptake in Rice Roots and Is Modulated by the Rice CBL1-CIPK23 Complex. The Plant Cell, , -
https://doi.org/10.1105/tpc.114.123455
Li R.F., Zhang J.W., Wu G.Y., Wang H.Z., Chen Y.J., Wei J.H. (2012): HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant, Cell & Environment, 35: 1582–1600.
Shabala Sergey, Pottosin Igor (2014): Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 151, 257-279
https://doi.org/10.1111/ppl.12165
(): Strategies for Improving Potassium Use Efficiency in Plants. Molecules and Cells, , -
https://doi.org/10.14348/molcells.2014.0141
Tai Fuju, Wang Qi, Yuan Zuli, Yuan Zhiheng, Li Huiyun, Wang Wei (2013): Characterization of five CIPK genes expressions in maize under water stress. Acta Physiologiae Plantarum, 35, 1555-1564
https://doi.org/10.1007/s11738-012-1197-2
Tripathi Vineeta, Parasuraman Boominathan, Laxmi Ashverya, Chattopadhyay Debasis (2009): CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. The Plant Journal, 58, 778-790
https://doi.org/10.1111/j.1365-313X.2009.03812.x
Wang Xiyao, Li Jia, Zou Xue, Lu Liming, Li Liqin, Ni Su, Liu Fan (2011): Ectopic Expression of AtCIPK23 Enhances Tolerance Against Low-K+ Stress in Transgenic Potato. American Journal of Potato Research, 88, 153-159
https://doi.org/10.1007/s12230-010-9173-0
Wang Rong-Kai, Li Ling-Li, Cao Zhong-Hui, Zhao Qiang, Li Ming, Zhang Ling-Yun, Hao Yu-Jin (2012): Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Molecular Biology, 79, 123-135
https://doi.org/10.1007/s11103-012-9899-9
Wang Yi, Wu Wei-Hua (2013): Potassium Transport and Signaling in Higher Plants. Annual Review of Plant Biology, 64, 451-476
https://doi.org/10.1146/annurev-arplant-050312-120153
Xu Jiang, Li Hao-Dong, Chen Li-Qing, Wang Yi, Liu Li-Li, He Liu, Wu Wei-Hua (2006): A Protein Kinase, Interacting with Two Calcineurin B-like Proteins, Regulates K+ Transporter AKT1 in Arabidopsis. Cell, 125, 1347-1360
https://doi.org/10.1016/j.cell.2006.06.011
Yang Wenqiang, Kong Zhaosheng, Omo-Ikerodah Edith, Xu Wenying, Li Qun, Xue Yongbiao (2008): Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). Journal of Genetics and Genomics, 35, 531-S2
https://doi.org/10.1016/S1673-8527(08)60073-9
Yu Yanhua, Xia Xinli, Yin Weilun, Zhang Hechen (2007): Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus. Plant Growth Regulation, 52, 101-110
https://doi.org/10.1007/s10725-007-9165-3
Zhang Hechen, Yin Weilun, Xia Xinli (2010): Shaker-like potassium channels in Populus, regulated by the CBL–CIPK signal transduction pathway, increase tolerance to low-K+ stress. Plant Cell Reports, 29, 1007-1012
https://doi.org/10.1007/s00299-010-0886-9