The effect of magnetic field strength on shoot regeneration and Agrobacterium tumefaciens-mediated gene transfer in flax (Linum usitatissimum L.)

https://doi.org/10.17221/195/2017-CJGPBCitation:Aycan M., Beyaz R., Bahadir A., Yildiz M. (2019): The effect of magnetic field strength on shoot regeneration and Agrobacterium tumefaciens-mediated gene transfer in flax (Linum usitatissimum L.). Czech J. Genet. Plant Breed., 55: 20-27.
download PDF

This study was conducted to determine the effects of magnetic field (MF) strength on shoot regeneration and Agrobacterium tumefaciens-mediated gene transfer in flax (Linum usitatissimum L.). Seeds of flax cv. Madaras were exposed to different MF strengths (0 – control, 75, 150, and 300 millitesla (mT)) for 24 h by using an electromagnetic generator system fabricated in laboratory conditions. After sterilization, seeds were germinated on MS (Murashige and Skoog) medium in Magenta vessels. Hypocotyl explants excised from 7-days-old seedlings were used for regeneration. GV2260 strain of Agrobacterium tumefaciens was used in transformation studies. Inoculated hypocotyls were cultured on MS medium containing 1 mg/l BAP (6-benzylaminopurine) and 0.02 mg/l NAA (naphthaleneacetic acid) for 2 days by co-cultivation. Then, they were transferred to MS medium containing the same growth regulators, 100 mg/l kanamycin and 500 mg/l Duocid for selection. The presence of the nptII gene was verified by PCR (polymerase chain reaction) analysis in putative transgenic plants. The highest results with respect to shoot regeneration and transformation frequency were obtained from treatments of 75 mT MF strength.

 

References:
Atak C., Emiroglu O., Alikamanoglu S., Rzakoulive A. (2003): Stimulation of regeneration by magnetic field in soybean (Glycine max L. Merrill) tissue cultures. Journal of Cell and Molecular Biology, 2: 113–119.
 
Belyavskaya N.A., Fomicheva V.M., Govorun R.D., Danilov V.I. (1992): Structural-functional organization of the meristem cells of pea, lentin and flax roots in conditions of screening the geomagnetic field. Biophysics, 37: 657–666.
 
Carbonnel M.V., Martínez E., Flórez M., Maqueda R., Pintor-López A., Amaya J.M. (2008): Magnetic field treatments improve germination and seedling growth in Festuca arundinacea Schreb. and Lolium perenne L.. Seed Science and Technology, 36, 31-37 https://doi.org/10.15258/sst.2008.36.1.03
 
Chakrabarty R., Viswakarma N., Bhat S. R., Kirti P. B., Singh B. D., Chopra V. L. (2002): Agrobacterium-mediated transformation of cauliflower: Optimization of protocol and development of Bt-transgenic cauliflower. Journal of Biosciences, 27, 495-502 https://doi.org/10.1007/BF02705046
 
Dayal S., Shing R.P. (1986): Effect of seed exposure to magnetic field on the height of tomato plants. Indian Journal of Agricultural Science, 56: 483–486.
 
De Clercq J., Zambre M., Van Montagu M., Dillen W., Angenon G. (2002): An optimized Agrobacterium -mediated transformation procedure for Phaseolus acutifolius A. Gray. Plant Cell Reports, 21, 333-340 https://doi.org/10.1007/s00299-002-0518-0
 
Flórez M., Carbonell M. V., Martínez E. (2009): Early Sprouting and First Stages of Growth of Rice Seeds Exposed to a Magnetic Field. Electromagnetic Biology and Medicine, 23, 157-166 https://doi.org/10.1081/LEBM-200042316
 
FLOREZ M, CARBONELL M, MARTINEZ E (2007): Exposure of maize seeds to stationary magnetic fields: Effects on germination and early growth. Environmental and Experimental Botany, 59, 68-75 https://doi.org/10.1016/j.envexpbot.2005.10.006
 
Funk Richard H.W., Monsees Thomas, Özkucur Nurdan (2009): Electromagnetic effects – From cell biology to medicine. Progress in Histochemistry and Cytochemistry, 43, 177-264 https://doi.org/10.1016/j.proghi.2008.07.001
 
Galland Paul, Pazur Alexander (2005): Magnetoreception in plants. Journal of Plant Research, 118, 371-389 https://doi.org/10.1007/s10265-005-0246-y
 
Goodman E.M., Greenebaum B., Marron M.T. (1995): Effects of electromagnetic fields on molecules and cells. International Review of Cytology, 158: 279–338.
 
Harris Sue-Re, Henbest Kevin B., Maeda Kiminori, Pannell John R., Timmel Christiane R., Hore P.J., Okamoto Haruko (2009): Effect of magnetic fields on cryptochrome-dependent responses in Arabidopsis thaliana. Journal of The Royal Society Interface, 6, 1193-1205 https://doi.org/10.1098/rsif.2008.0519
 
Heberle-Bors E.F., Moreno R.M.B., Alwen A., Stoger E., Vicente O. (1990): Transformation of pollen. In: Nijkamp H.J.J., Van Der Plas L.H.W., Van Aartrijk J. (eds.): Progress in Plant Cellular and Molecular Biology. Kluwer Academic Publications: 244–251.
 
Hooykaas Paul J. J., Schilperoort Rob A. (1992): Agrobacterium and plant genetic engineering. Plant Molecular Biology, 19, 15-38 https://doi.org/10.1007/BF00015604
 
Jordan Mark C., McHughen Alan (1988): Glyphosate tolerant flax plants from Agrobacterium mediated gene transfer. Plant Cell Reports, 7, 281-284 https://doi.org/10.1007/BF00272543
 
Joubert Philippe, Beaupère Daniel, Lelièvre Philippe, Wadouachi Anne, Sangwan Rajbir S, Sangwan-Norreel Brigitte S (2002): Effects of phenolic compounds on Agrobacterium vir genes and gene transfer induction—a plausible molecular mechanism of phenol binding protein activation. Plant Science, 162, 733-743 https://doi.org/10.1016/S0168-9452(02)00012-2
 
Lopez S. Joseph, Kumar R. Raj, Pius P. K., Muraleedharan N. (2004): Agrobacterium tumefaciens-Mediated genetic transformation in tea (Camellia sinensis [L.] O. Kuntze). Plant Molecular Biology Reporter, 22, 201-202 https://doi.org/10.1007/BF02772730
 
Mahmoudian Mehrzad, Yücel Meral, Öktem Hüseyin Avni (2002): Transformation of lentil (Lens culinaris M.) cotyledonary nodes by vacuum infiltration ofAgrobacterium tumefaciens. Plant Molecular Biology Reporter, 20, 251-257 https://doi.org/10.1007/BF02782460
 
Murashige Toshio, Skoog Folke (1962): A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
 
Negishi Y., Hashimoto A., Tsushima M., Dobrota C., Yamashita M., Nakamura T. (1999): Growth of pea epicotyl in low magnetic field implication for space research. Advances in Space Research, 23, 2029-2032 https://doi.org/10.1016/S0273-1177(99)00342-7
 
Nester E.W., Amasino R., Akiyoshi D., Klee H., Montoya A., Gordon M.P. (1984): The molecular basis of plant cell transformation by Agrobacterium tumefaciens. Basic Life Science, 30: 815–822.
 
Okubo Hiroshi, Wada Koichi, Uemoto Shunpei (1991): In vitro morphogenetic response and distribution of endogenous plant hormones in hypocotyl segments of snapdragon (Antirrhinum majus L.). Plant Cell Reports, 10, - https://doi.org/10.1007/BF00234582
 
Podlesny J., Misiak L., Podlesna A. (2004): Concentration of free radicals in pea seeds after pre-sowing treatment with magnetic field. International Agrophysics, 18: 261–267.
 
Reina Francisco Garc�a, Pascual Luis Arza (2001): Influence of a stationary magnetic field on water relations in lettuce seeds. Part I: Theoretical considerations. Bioelectromagnetics, 22, 589-595 https://doi.org/10.1002/bem.88
 
Savostin P.W. (1930): Magnetic growth relations in plant. Planta, 12: 327.
 
Simkó Myrtill (2004): Induction of Cell Activation Processes by Low Frequency Electromagnetic Fields. The Scientific World JOURNAL, 4, 4-22 https://doi.org/10.1100/tsw.2004.174
 
Snedecor G.W., Cochran W.G. (1989): Statistical Methods. 8th Ed., Ames, Iowa State University Press: 217–235.
 
Soltani F., Kashi A., Arghavani M. (2006): Effect of magnetic field on Asparagus officinalis L. seed germination and seedling growth. Seed Science and Technology, 34, 349-353 https://doi.org/10.15258/sst.2006.34.2.10
 
Spokevicius Antanas V., Van Beveren Kim, Leitch Mathew A., Bossinger Gerd (2005): Agrobacterium-mediated in vitro transformation of wood-producing stem segments in eucalypts. Plant Cell Reports, 23, 617-624 https://doi.org/10.1007/s00299-004-0856-1
 
Welbaum G. E., Bradford K. J., Yim Kyu-Ock, Booth D. T., Oluoch M. O. (1998): Biophysical, physiological and biochemical processes regulating seed germination. Seed Science Research, 8, - https://doi.org/10.1017/S0960258500004074
 
Yang L., Wang C., Wang L., Xu C., Chen K. (2013): An efficient multiplex PCR assay for early detection of Agrobacterium tumefaciens in transgenic plant material. Turkish Journal of Agriculture and Forestry, 37: 157–162.
 
YAO Y, LI Y, YANG Y, LI C (2005): Effect of seed pretreatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet-B radiation. Environmental and Experimental Botany, 54, 286-294 https://doi.org/10.1016/j.envexpbot.2004.09.006
 
Yildiz Mustafa, Er Celâl (2002): The effect of sodium hypochlorite solutions on in vitro seedling growth and shoot regeneration of flax ( Linum usitatissimum ). Naturwissenschaften, 89, 259-261 https://doi.org/10.1007/s00114-002-0310-6
 
Yildiz M., Özcan S., Er C. (2002): The effect of different explant sources on adventitious shoot regeneration in flax (Linum usitatissimum L.) Turkish Journal of Biology, 26: 37–40.
 
download PDF

© 2019 Czech Academy of Agricultural Sciences