Interspecific hybridization and plant breeding: From historical retrospective through work of Mendel to current crops

https://doi.org/10.17221/19/2022-CJGPBCitation:

Kopecký D., Martín A., Smýkal P. (2022): Interspecific hybridization and plant breeding: From historical retrospective through work of Mendel to current crops. Czech J. Genet. Plant Breed., 58: 113–126.

download PDF

There is a relatively long history of plant hybridization traced back to ancient time, both from theoretical as well as practical perspectives. At first considered as an evolutionary dead-end, it was soon recognized to have important role in plant speciation. Beside his work on pea, G.J. Mendel also conducted interspecific hybridization using several species including Hieracium. Current knowledge shows that the frequent occurrence of wide hybridization in nature is often connected with polyploidy. Interspecific hybridization has played a role in plant domestication and numerous crops are allopolyploids, sometimes of complex hybrid origin. This has been also used in practical breeding, extending even to intergeneric crosses which benefit from heterosis, transgressive segregation and introgression phenomenon. This review aims to provide a  a  historical retrospective and summarize both current knowledge and the usage of interspecific hybridization in crop breeding.

References:
Abbott R., Albach D., Ansell S., Arntzen J.W., Baird S.J.E., Bierne N., Boughman J., Brelsford A., Buerkle C.A., Buggs R. et al. (2013): Hybridization and speciation. Journal of Evolutionary Biology, 26: 229–246. https://doi.org/10.1111/j.1420-9101.2012.02599.x
 
Akera T., Chmátal L., Trimm E., Yang K., Aonbangkhen C., Chenoweth D.M., Janke C., Schultz R.M., Lampson M.A. (2017): Spindle asymmetry drives non-Mendelian chromosome segregation. Science, 358: 668–672. https://doi.org/10.1126/science.aan0092
 
Anamthawat-Jónsson K. (2001): Molecular cytogenetics of introgressive hybridization in plants. Methods in Cell Science, 23: 139–148.
 
Arseniuk E. (2015): Triticale abiotic s tresses – An overview. In: Triticale Book. Part II. Agri-Food Canada: 69–82.
 
Barker M.S., Arrigo N., Baniaga A.E., Li Z., Levin D.A. (2016): On the relative abundance of autopolyploids and allopolyploids. New Phytologist, 210: 391–398. https://doi.org/10.1111/nph.13698
 
Bentley G. (1960): Eighteenth-century concepts of the origin of species. Proceedings of the American Philosophical Society, 104: 227–234.
 
Bohra A., Jha U.C., Adhimoolam P., Bisht D., Singh N.P. (2016): Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Reports, 35: 967–993. https://doi.org/10.1007/s00299-016-1949-3
 
Burešová V., Kopecký D., Bartoš J., Martinek P., Watanabe N., Vyhnánek T., Doležel J. (2015): Variation in genome composition of blue-aleurone wheat. Theoretical and Applied Genetics, 128: 273–282. https://doi.org/10.1007/s00122-014-2427-3
 
Cao M., Bughrara S.S., Sleper D.A. (2003): Cytogenetic analysis of Festuca species and amphiploids between Festuca mairei and Lolium perenne. Crop Science, 43: 1659–1662. https://doi.org/10.2135/cropsci2003.1659
 
Cernoch V., Kopecky D. (2020): Drought tolerance and regrowth capacity revealed in the Festuca-Lolium complex. Biologia Plantarum, 64: 561–568. https://doi.org/10.32615/bp.2020.093
 
Cetl I. (1973): Mendel’s hybridisation experiments with other plants than Pisum. Folia Facultatis Scientiarum Naturalium Universitatis Purkynianae Brunensis, Biologia, 14: 3–42.
 
Cornille A., Giraud T., Smulders M.J., Roldán-Ruiz I., Gladieux P. (2014): The domestication and evolutionary ecology of apples. Trends in Genetics, 30: 57–65. https://doi.org/10.1016/j.tig.2013.10.002
 
Darrow G.M. (1966): The Strawberry: History, Breeding, and Physiology. New York, Holt, Rinehart and Winston.
 
Darwin C. (1876): The Effects of Cross and Self Fertilisation in the Vegetable Kingdom. London, John Murray.
 
Dorsey E. (1936): Induced polyploidy in wheat and rye. Journal of Heredity, 27: 155–160. https://doi.org/10.1093/oxfordjournals.jhered.a104195
 
Duchesne A.N. (1766): Histoire Naturelle des Fraisiers Contenant les Vues d’Économie Réunies à la Botanique, et Suivie de Remarques Particulières sur Plusieurs Points qui ont Rapport à l’Histoire Naturelle Générale, par M. Duchesne Fils. (Didot le Jeune, Paris)
 
Dvorak J., Luo M.C., Yang Z.L., Zhang H.B. (1998): The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theoretical and AppliedGenetics, 97: 657–670. https://doi.org/10.1007/s001220050942
 
Dvorák J., Zhang H.B. (1990): Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proceedings of the National Academy of Sciences of the USA, 87: 9640–9644. https://doi.org/10.1073/pnas.87.24.9640
 
East E.M. (1936): Heterosis. Genetics, 21: 375–397. https://doi.org/10.1093/genetics/21.4.375
 
Edger P.P., Poorten T.J., VanBuren R., Hardigan M.A., Colle M., McKain M.R., Smith R.D., Teresi S.J., Nelson A.D.L., Wai C.M., Alger E.I., Bird K.A., Yocca A.E., Pumplin N., Ou S., Ben-Zvi G., Brodt A., Baruch K., Swale T., Shiue L., Acharya C.B., Cole G.S., Mower J.P., Childs K.L., Jiang N., Lyons E., Freeling M., Puzey J.R., Knapp S.J. (2019): Origin and evolution of the octoploid strawberry genome. Nature Genetics, 51: 541–547.  https://doi.org/10.1038/s41588-019-0356-4
 
Fishman L., Saunders A. (2008): Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science, 322: 1559–1562. https://doi.org/10.1126/science.1161406
 
Flowers J.M., Hazzouri K.M., Gros-Balthazard M., Mo Z., Koutroumpa K., Perrakise A., Ferrand S., Khierallah H.S.M., Fuller D.Q., Aberlenc F., Fournaraki C., Purugganan M.D. (2019): Cross-species hybridization and the origin of North African date palms. Proceedings of the National Academy of Sciences of the USA, 116: 1651–1658. https://doi.org/10.1073/pnas.1817453116
 
Focke W.O. (1881): Die Pflanzen-Mischling. Berlin, Borntraeger.
 
Funk H. (2013): Adam Zalužanský’s “De sexu plantarum” (1592): An early pioneering chapter on plant sexuality. Archives of Natural History, 40: 244–256. https://doi.org/10.3366/anh.2013.0171
 
Gärtner F.C. (1849): Versuche und Beobachtungen űber die Bastarderzeugung im Fflanzenreich. Stuttgart, K.F. Hering Company.
 
Gaeta R.T., Pires J.C. (2010): Homoeologous recombination in allopolyploids: The polyploid ratchet. New Phytologist, 186: 18–28. https://doi.org/10.1111/j.1469-8137.2009.03089.x
 
Giancola S., Rao Y., Chaillou S., Hiard S., Martin-Canadell A., Pelletier G., Budar F. (2007): Cytoplasmic suppression of Ogura cytoplasmic male sterility in European natural populations of Raphanus raphanistrum. Theoretical and Applied Genetics, 114: 1333–1343. https://doi.org/10.1007/s00122-007-0520-6
 
Greer E., Martin A.C., Pendle A., Colas I., Jones A.M.E., Moore G., Shaw P. (2012): The Ph1 locus suppresses Cdk2-type activity during premeiosis and meiosis in wheat. Plant Cell, 24: 152–162. https://doi.org/10.1105/tpc.111.094771
 
Grønnerød S., Fjellheim S., Humphreys M.W., Østrem L., Canter P.H., Grieg Z., Jørgensen Ø., Larsen A., Rognli O.A. (2004): Application of AFLP and GISH techniques for identification of Festuca chromosome segments conferring winter hardiness in a Lolium perenne × Festuca pratensis population. In: Hopkins A., Wang Z.Y., Mian R., Sladge M., Backer R.E. (eds.): Molecular Breeding of Forage and Turf. Dordrecht, Kluwer Academic Publishers: 81–86.
 
Guo Y.D., Mizukami Y., Yamada T. (2005): Genetic characterization of androgenic progeny derived from Lolium perenne × Festuca pratensis cultivars. New Phytologist, 166: 455–464. https://doi.org/10.1111/j.1469-8137.2005.01345.x
 
Harvey J. (2003): Fertility or sterility? Darwin, Naudin and the problem of experimental hybridity. Endeavour, 27: 57–62. https://doi.org/10.1016/S0160-9327(03)00066-8
 
Henikoff S., Ahmad K., Malik H.S. (2001): The centromere paradox: Stable inheritance with rapidly evolving DNA. Science, 293: 1098–1102. https://doi.org/10.1126/science.1062939
 
Heslop-Harrison J.S., Schwarzacher T. (2007): Domestication, genomics, and the future for banana. Annals of Botany, 100: 1073–1084. https://doi.org/10.1093/aob/mcm191
 
Hou D.-X., Fujii M., Terahara N., Yoshimoto M. (2004): Molecular mechanisms behind the chemopreventive effects of anthocyanidins. Journal of Biomedicine and Biotechnology, 2004: 321–325.
 
Humphreys M.W., Pašakinskiene I. (1996): Chromosome painting to locate genes for drought resistance transferred from Festuca arundinacea into Lolium multiflorum. Heredity, 77: 530–534. https://doi.org/10.1038/hdy.1996.180
 
Humphreys M.W., Zwierzykowski Z. (2020): Festulolium, a century of research and breeding and its increased relevance in meeting the requirements for multiplication grassland agriculture. Biologia Plantarum, 64: 578–590. https://doi.org/10.32615/bp.2020.108
 
Humphreys M.W., Thomas H.M., Morgan W.G., Meredith M.R., Harper J.A., Thomas H., Zwierzykowski Z., Ghesquiére M. (1995): Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridization. Heredity, 75: 171–174. https://doi.org/10.1038/hdy.1995.120
 
Janzen G.M., Wang L., Hufford M.B. (2018): The extent of adaptive wild introgression in crops. New Phytologist, 221: 1279–1288. https://doi.org/10.1111/nph.15457
 
Jauhar P.P. (1993): Cytogenetics of the Festuca-Lolium complex: Relevance to Breeding. Monographs on Theoretical and Applied Genetics, Vol. 18, Berlin, Springer-Verlag.
 
Jenczewski E., Alix K. (2004): From diploids to allopolyploids: The emergence of efficient pairing control genes in plants. Critical Reviews in Plant Sciences, 23: 21–45. https://doi.org/10.1080/07352680490273239
 
Jones D.F. (1917): Dominance of linked factors as a means of accounting for heterosis. Proceedings of the National Academy of Sciences of the USA, 3: 310–312. https://doi.org/10.1073/pnas.3.4.310
 
Junker T. (1991): Heinrich Georg Bronn and origin of species. Sudhoffs Arch, 75: 180–208. (in German)
 
Junker T. (2011): Der Darwinismus-Streit in der deutschen Botanik: Evolution, Wissenschaftstheorie und Weltanschauung im 19. Jahrhundert. 2nd Ed. Norderstedt, Books on Demand.
 
Kamstra S.A., Kuipers A.G.J., De Jeu M.J., Ramanna M.S., Jacobsen E. (1999): The extent and position of homoeologous recombination in a distant hybrid of Alstroemeria: A molecular cytogenetic assessment of first generation backcross progenies. Chromosoma, 108: 52–63.  https://doi.org/10.1007/s004120050351
 
Kaneko Y., Bang S.W. (2014): Interspecific and intergeneric hybridization and chromosomal engineering of Brassicaceae crops. Breeding Science, 64: 14–22. https://doi.org/10.1270/jsbbs.64.14
 
Karlov G.I., Khrustaleva L.I., Lim K.B., van Tuyl J.M. (1999): Homoeologous recombination in 2n-gametes producing interspecific hybrids of Lilium (Liliaceae) studied by genomic in situ hybridization (GISH). Genome, 42: 681–686.  https://doi.org/10.1139/g98-167
 
Karpechenko G.D. (1927): Polyploid hybrid of Raphanus sativus L. × Brassica oleracea L. Bulletin of Applied Botanical Genetic and Plant Breeding, 7: 305–410.
 
Khan N., Barba-Gonzalez R., Ramanna M.S., Visser R.G.F., Van Tuyl J.M. (2009): Construction of chromosomal recombination maps of three genomes of lilies (Lilium) based on GISH analysis. Genome, 52: 238–251.  https://doi.org/10.1139/G08-122
 
Khrustaleva L.I., Kik C. (1998): Cytogenetical studies in the bridge cross Allium cepa × (A.fistulosum × A.roylei). Theoretical and Applied Genetics, 96: 8–14. https://doi.org/10.1007/s001220050702
 
Khrustaleva L., Mardini M., Kudryavtseva N., Alizhanova R., Romanov D., Sokolov P., Monakhos G. (2019): The power of genomic in situ hybridization (GISH) in interspecific breeding of bulb onion (Allium cepa L.) resistant to downy mildew (Peronospora destructor [Berk.] Casp.). Plants-Basel, 8: 36. https://doi.org/10.3390/plants8020036
 
Knight E., Greer E., Draeger T., Thole V., Reader S., Shaw P., Moore G. (2010): Inducing chromosome pairing through premature condensation: Analysis of wheat interspecific hybrids. Functional & Integrative Genomics, 10: 603–608.
 
Knight T.A. (1799): An account of some experiments on the fecundation of vegetables. Philosophical Transactions of the Royal Society, 89: 195–204.
 
Kofoet A., Kik C., Wietsma W.A., de Vries J.N. (1990): Inheritance of resistance to downy mildew (Peronospora destructor [Berk] Casp) from Allium roylei Stearn in the backcross Allium cepa L × (A. roylei × A. cepa). Plant Breeding, 105: 144–149. https://doi.org/10.1111/j.1439-0523.1990.tb00467.x
 
Kölreuter J.G. (1766): Vorläufige Nachricht von einigen das Geschlecht der pflanzen betreffenden Versuchen und Beobachtungen, nebst Fortsetzungen 1, 2 und 3 (1761–1766). Leipzig, Wilhelm Engelmann.
 
Kopecký D., Loureiro J., Zwierzykowski Z., Ghesquière M., Doležel J. (2006): Genome constitution and evolution in Lolium × Festuca hybrid cultivars (Festulolium). Theoretical and Applied Genetics, 113: 731–742. https://doi.org/10.1007/s00122-006-0341-z
 
Kopecký D., Bartoš J., Zwierzykowski Z., Doležel J. (2009): Chromosome pairing of individual genomes in tall fescue (Festuca arundinacea Schreb.), its progenitors, and hybrids with Italian ryegrass (Lolium multiflorum Lam.). Cytogenetic and Genome Research, 124: 170–178. https://doi.org/10.1159/000207525
 
Kopecký D., Havrankova M., Loureiro J., Castro S., Lukaszewski A.J., Bartos J., Kopecka J., Dolezel J. (2010): Physical distribution of homoeologous recombination in individual chromosomes of Festuca pratensis in Lolium multiflorum. Cytogenetic and Genome Research, 129: 162–172. https://doi.org/10.1159/000313379
 
Kopecký D., Scholten O., Majka J., Burger-Meijer K., Duchoslav M., Bartoš J. (2022): Genome dominance in Allium hybrids (A. cepa × A. roylei). Frontiers in Plant Sciences, 13: 854127. https://doi.org/10.3389/fpls.2022.854127
 
Kosmala A., Zwierzykowski Z., Gasior D., Rapacz M., Zwierzykowska E., Humphreys M.W. (2006): GISH/FISH mapping of genes for freezing tolerance transferred from Festuca pratensis to Lolium multiflorum. Heredity, 96: 243–251. https://doi.org/10.1038/sj.hdy.6800787
 
Kruse A. (1973): Hordeum × Triticum hybrids. Hereditas, 73: 157–161. https://doi.org/10.1111/j.1601-5223.1973.tb01078.x
 
Lamy S., Blanchette M., Michaud-Levesque J., Lafleur R., Durocher Y., Moghrabi A., Barrette S., Gingras D., Beliveau R. (2006): Delphidin, a dietary anthocyanidin, inhibits vascular endothelial growth factor receptor-2 phosphorylation. Cancerogenesis, 27: 989–996. https://doi.org/10.1093/carcin/bgi279
 
Lu K., Wei L., Li X., Wang Y., Wu J., Liu M., Zhang C., Chen Z., Xiao Z., Jian H., Cheng F., Zhang K., Du H., Cheng X., Qu C., Qian W., Liu L., Wang R., Zou Q., Ying J., Xu X., Mei J., Liang Y., Chai Y.R., Tang Z., Wan H., Ni Y., He Y., Lin N., Fan Y., Sun W., Li N.-N., Zhou G., Zheng H., Wang X., Paterson A.H., Li J. (2019): Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nature Communications, 10: 1154. https://doi.org/10.1038/s41467-019-09134-9
 
Lukaszewski A.J. (1990): Frequency of 1RS.1AL and 1RS.1BL translocations in United-States wheats. Crop Science, 30: 1151–1153.
 
Lukaszewski A.J., Gustafson J.P. (1987): Cytogenetics of Triticale. Plant Breeding Reviewes, 5: 41–93.
 
Lukaszewski A.J., Kopecký D. (2010): The Ph1 locus from wheat controls meiotic chromosome pairing in autotetraploid rye (Secale cereale L.). Cytogenetic and Genome Research, 129: 117–123. https://doi.org/10.1159/000314279
 
Luo M.C., Ma Y., You F.M., Anderson O.D., Kopecký D., Šimková H., Šafář J., Doležel J., Gill B., McGuire P.E., Dvorak J. (2010): Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species. BMC Genomics, 11: 122. https://doi.org/10.1186/1471-2164-11-122
 
Majka M., Serfling A., Czembor P.C., Ślusarkiewicz-Jarzina A., Kwiatek M., Ordon F., Wisniewska H. (2018): Resistance of (Aegilops tauschii × Secale cereale) × Triticosecale hybrids to leaf rust (Puccinia triticina) determined on the macroscopic and microscopic level. Frontiers in Plant Sciences, 9: 1418. https://doi.org/10.3389/fpls.2018.01418
 
Marcussen T., Sandve S.R., Heier L., Spannagl M., Pfeifer M., Internation Wheat Genome Sequencing Consortium, Jakobsen K.S., Wulff B.B., Steuernagel B., Mayer K.F., Olsen O.A. (2014): Ancient hybridizations among the ancestral genomes of bread wheat. Nature Biotechnology, 32: 656–662.
 
Martín A., Alvarez J.B., Martín L.M., Barro F., Ballesteros J. (1999): The development of Tritordeum: A novel cereal for food processing. Journal of Cereal Science, 30: 85–95. https://doi.org/10.1006/jcrs.1998.0235
 
Martín A.C., Atienza S.G., Ramírez M.C., Barro F., Martín A. (2009): Chromosome engineering in wheat to restore male fertility in the msH1 CMS system. Molecular Breeding, 24: 397–408. https://doi.org/10.1007/s11032-009-9301-z
 
Martín A.C., Shaw P., Phillips D., Reader S., Moore G. (2014): Licensing MLH1 sites for crossover during meiosis. Nature Communications, 5: 1–5. https://doi.org/10.1038/ncomms5580
 
Martín A.C., Rey M.D., Shaw P., Moore G. (2017): Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover. Chromosoma, 126: 669–680. https://doi.org/10.1007/s00412-017-0630-0
 
Martín A.C., Castillo A., Atienza S.G., Rodríguez Suarez C. (2018): A cytoplasmic male sterility (CMS) system in durum wheat. Molecular Breeding, 38: 90.  https://doi.org/10.1007/s11032-018-0848-4
 
Mason A.S., Batley J. (2015): Creating new interspecific hybrid and polyploid crops. Trends in Biotechnology, 33: 436–441. https://doi.org/10.1016/j.tibtech.2015.06.004
 
Mayr E. (1986): Joseph Gottlieb Kölreuter’s contributions to biology. Osiris, 2: 135–176. https://doi.org/10.1086/368655
 
Mendel G. (1866): Versuche über Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereines in Brünn, 4: 3–47.
 
Mendel G. (1870): Über einige aus künstlicher Befruchtung gewonnenen Hieracium-Bastarde. Verhandlungen des naturforschenden Vereines in Brünn, 8: 26–31.
 
Molnár-Láng M. (2015): The crossability of wheat with rye and other related species. In: Molnár-Láng M., Ceoloni C., Doležel J. (eds.): Alien Introgression in Wheat: Cytogenetics, Molecular Biology, and Genomics. Chem, Springer International Publishing: 103–120.
 
Molnár-Lang M., Linc G., Szakács E. (2014): Wheat–barley hybridization: The last 40 years. Euphytica, 195: 315–329. https://doi.org/10.1007/s10681-013-1009-9
 
Morgan W.G., King I.P., Koch S., Harper J.A., Thomas H.M. (2001): Introgression of chromosomes of Festuca arundinacea var. glaucescens into Lolium multiflorum revealed by genomic in situ hybridisation (GISH). Theoretical and Applied Genetics, 103: 696–701. https://doi.org/10.1007/s001220100634
 
Müntzing A. (1930): Outlines to a genetic monograph for the genus Galeopsis: With special reference to the nature and inheritance of partial sterility. Hereditas, 13: 185–341. https://doi.org/10.1111/j.1601-5223.1930.tb02522.x
 
Müntzing A. (1936): The evolutionary significance of autopolyploidy. Hereditas, 21: 363–378. https://doi.org/10.1111/j.1601-5223.1936.tb03204.x
 
Murphy S.P., Bass H.W. (2012): The maize (Zea mays) desynaptic (dy) mutation defines a pathway for meiotic chromosome segregation, linking nuclear morphology, telomere distribution and synapsis. Journal of Cell Science, 125: 3681–3690. https://doi.org/10.1242/jcs.108290
 
Naranjo T. (2014): Dynamics of rye telomeres in a wheat background during early meiosis. Cytogenetic and Genome Research, 143: 60–68. https://doi.org/10.1159/000363524
 
Negbi M. (1995): Male and female in Theophrastus’s botanical works. Journal of the History of Biology, 28: 317–332. https://doi.org/10.1007/BF01059192
 
Nitride C., D’Auria G., Dente A., Landolfi V., Picariello G., Mamone G., Blandino M., Romano R., Ferrant P. (2022): Tritordeum as an innovative alternative to wheat: A comparative digestion study on bread. Molecules, 27: 1308. https://doi.org/10.3390/molecules27041308
 
Ogura H. (1968): Studies on the new male sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Memoirs of the Faculty of Agriculture, Kagoshima University, 6: 39–78.
 
Orellana J., Cermeno M.C., Lacadena J.R. (1984): Meiotic pairing in wheat-rye addition and substitution lines. Canadian Journal of Genetics and Cytology, 26: 25–33. https://doi.org/10.1139/g84-005
 
Pardo-Manuel de Villena F., Sapienza C. (2001): Nonrandom segregation during meiosis: The unfairness of females. Mammalian Genome, 12: 331–339. https://doi.org/10.1007/s003350040003
 
Perníčková K., Koláčková V., Lukaszewski A.J., Fan C.L., Vrána J., Duchoslav M., Jenkins G., Phillips D., Šamajová O., Sedlářová M., Šamaj J., Doležel J., Kopecký D. (2019): Instability of alien chromosome introgressions in wheat associated with improper positioning in the nucleus. International Journal of Molecular Sciences, 20: 1448. https://doi.org/10.3390/ijms20061448
 
Placido D.F., Campbell M.T., Folsom J.J., Cui X.C., Kruger G.R., Baenziger P.S., Walia H. (2013): Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiology, 161: 1806–1819. https://doi.org/10.1104/pp.113.214262
 
Prohens J., Gramazio P., Plazas M. et al. (2017): Introgressiomics: A new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213: 158. https://doi.org/10.1007/s10681-017-1938-9
 
Pshenichnikova T.A., Simonov A.V., Ermakova M.F., Chistyakova A.K., Shchukina L.V., Morozova E.V. (2010): The effects on grain endosperm structure of an introgression from Aegilops speltoides Tausch. into chromosome 5A of bread wheat. Euphytica, 175: 315–322. https://doi.org/10.1007/s10681-010-0168-1
 
Purugganan M.D. (2019): Evolutionary insights into the nature of plant domestication. Current Biology, 29: R705–R714. https://doi.org/10.1016/j.cub.2019.05.053
 
Rieseberg L.H., Carney S.E. (1998): Plant hybridization. New Phytologist, 140: 599–624. https://doi.org/10.1046/j.1469-8137.1998.00315.x
 
Roberts H.F. (1929): Plant Hybridization Before Mendel. Hafner; n.e. of 1929e. Edition.
 
Roderick H.W., Morgan W.G., Harper J.A., Thomas H.M. (2003): Introgression of crown rust (Puccinia coronata) resistance from meadow fescue (Festuca pratensis) into Italian ryegrass (Lolium multiflorum) and physical mapping of the locus. Heredity, 91: 396–400. https://doi.org/10.1038/sj.hdy.6800344
 
Sax K. (1936): The experimental production of polyploidy. Journal of the Arnold Arboretum, 17: 153–159. https://doi.org/10.5962/p.185351
 
Scholten O.E., van Heusden A.W., Khrustaleva L.I., Burger-Meijer K., Mank R.A., Antonise R.G.C., Harrewijn J.L., Van Haecke W., Oost E.H., Peters R.J., Kik C. (2007): The long and winding road leading to the successful introgression of downy mildew resistance into onion. Euphytica, 156: 345–353. https://doi.org/10.1007/s10681-007-9383-9
 
Scholten O.E., van Kaauwen M.P.W., Shahin A., Hendrickx P.M., Keizer L.C.P., Burger K., van Heusden A.W., van der Linden C.G., Vosman B. (2016): SNP-markers in Allium species to facilitate introgression breeding in onion. BMC Plant Biology, 16: 187. https://doi.org/10.1186/s12870-016-0879-0
 
Sears E.R., Okamoto M. (1958): Intergenomic chromosome relationships in hexaploid wheat. Proc. 10th Int. Congress on Genetics, Montreal, 2: 258–259.
 
Shull G.H. (1908): The composition of a field of maize. Journal of Heredity, 4: 296–301. https://doi.org/10.1093/jhered/os-4.1.296
 
Shull G.H. (1911): The genotypes of maize. American Naturalist, 45: 234–252. https://doi.org/10.1086/279207
 
Smýkal P., Nelson M.N., Berger J.D., von Wettberg E.J.B. (2018): The impact of genetic changes during crop domestication. Agronomy, 8: 119. https://doi.org/10.3390/agronomy8070119
 
Soltis P.S., Soltis D.E. (2009): The role of hybridization in plant speciation. Annual Review of Plant Biology, 60: 561–588. https://doi.org/10.1146/annurev.arplant.043008.092039
 
Stebbins G.L. (1959): The role of hybridization in evolution. Proceedings of the American Philosophical Society, 103: 231–251.
 
Takahashi C., Leitch I.J., Ryan A., Bennett M.D., Brandham P.E. (1997): The use of genomic in situ hybridization (GISH) to show transmission of recombinant chromosomes by a partially fertile bigeneric hybrid, Gasteria lutzii × Aloe aristata (Aloaceae), to its progeny. Chromosoma, 105: 342–348.
 
Thomas H.M., Morgan W.G., Meredith M.R., Humphreys M.W., Thomas H., Leggett J.M. (1994): Identification of parental and recombined chromosomes in hybrid derivatives of Lolium multiflorum × Festuca pratensis by genomic in situ hybridization. Theoretical and Applied Genetics, 88: 909–913.  https://doi.org/10.1007/BF00220795
 
Trojan V., Musilová M., Vyhnánek T., Klejdus B., Hanáček P., Havel L. (2014): Chalcone synthase expression and pigment deposition in wheat with purple and blue colored caryopsis. Journal of Cereal Science, 59: 48–55. https://doi.org/10.1016/j.jcs.2013.10.008
 
Tsunewaki K. (1964): Genetic studies on a 6x derivative from an 8x Triticale. Canadian Journal of Genetics and Cytology, 6: 1–11. https://doi.org/10.1139/g64-001
 
van der Meer Q.P., de Vries J.N. (1990): An interspecific cross between Allium roylei Stearn and Allium cepa L. and its backcross to Allium cepa. Euphytica, 47: 29–31. https://doi.org/10.1007/BF00040359
 
van Dijk P.J., Ellis THN. (2016): The full breadth of Mendel’s genetics. Genetics, 204: 1327–1336. https://doi.org/10.1534/genetics.116.196626
 
van Heusden A.W., van Ooijen J.W., Vrielink-van Ginkel R., Verbeek W.H.J., Wietsma W.A., Kik C. (2000): A genetic map of an interspecific cross in Allium based on amplified fragment length polymorphism (AFLP (TM)) markers. Theoretical and Applied Genetics, 100: 118–126. https://doi.org/10.1007/s001220050017
 
Visioli G., Lauro M., Vamerali T., Dal Cortivo C., Panozzo A., Folloni S., Piazza C., Ranieri R. (2020): A comparative study of organic and conventional management on the rhizosphere microbiome, growth and grain quality traits of Tritordeum. Agronomy, 10: 1717. https://doi.org/10.3390/agronomy10111717
 
Warschefsky E., Penmetsa R.V., Cook D.R., von Wettberg E.J.B. (2014): Back to the wilds: Tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. American Journal of Botany, 101: 1791–1800. https://doi.org/10.3732/ajb.1400116
 
Wendel J.F., Crown R.C. (2003): Polyploidy and the evolutionary history of cotton. Advances in Agronomy, 78: 139–184.
 
Whelan E.D.P. (1981): Cytoplasmic male sterility in Helianthus giganteus L. × H. annuus L. interspecific hybrids. Crop Science, 21: 855–858. https://doi.org/10.2135/cropsci1981.0011183X002100060014x
 
Winge Ø. (1917): The chromosomes: Their number and general importance. Comptes-rendus des travaux du Laboratoire Carlsberg, 13: 131–275.
 
Winge Ø. (1932): On the origin of constant species-hybrids. Svensk Botanisk Tidskrift, 26: 107–122.
 
Wu G.A., Prochnik S., Jenkins J. et al. (2014): Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nature Biotechnology, 32: 656–662. https://doi.org/10.1038/nbt.2906
 
Xiong Z.Y., Gaeta R.T., Pires J.C. (2011): Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proceedings of the National Academy of Sciences of the USA, 108: 7908–7913. https://doi.org/10.1073/pnas.1014138108
 
Yakimowski S.B., Rieseberg L.H. (2014): The role of homoploid hybridization in evolution: A century of studies synthesizing genetics and ecology. American Journal of Botany, 101: 1247–1258. https://doi.org/10.3732/ajb.1400201
 
Yamagishi H., Terachi T. (1994): Molecular and biological studies on male-sterile cytoplasm in the Cruciferae. I. The origin and distribution of Ogura male-sterile cytoplasm in Japanese wild radishes (Raphanus sativus L.) revealed by PCR-aided assay of their mitochondrial DNAs. Theoretical and Applied Genetics, 87: 996–1000. https://doi.org/10.1007/BF00225794
 
Zeller F.J. (1973): 1B/1R wheat-rye chromosome substitutions and translocations. In: Proc. 4th Int. Wheat Genetics Symposium, Columbia, Missouri: 209—221.
 
Zirkle C. (1934): More records of plant hybridization before Koelreuter. Journal of Heredity, 25: 3–18. https://doi.org/10.1093/oxfordjournals.jhered.a103836
 
Zwierzykowski Z., Kosmala A., Zwierzykowska E., Jones N., Joks W., Bocianowski J. (2006): Genome balance in six successive generations of the allotetraploid Festuca pratensis × Lolium perenne. Theoretical and Applied Genetics, 113: 539–547. https://doi.org/10.1007/s00122-006-0322-2
 
Zwierzykowski Z., Zwierzykowska E., Taciak M., Kosmala A., Jones RN., ZwierzykowskiW., Książczyk T., Krajewski P. (2011): Genomic structure and fertility in advanced breeding populations derived from an allotetraploid Festuca pratensis × Lolium perenne cross. Plant Breeding, 130: 476–480. https://doi.org/10.1111/j.1439-0523.2010.01839.x
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti