The pod shattering resistance of soybean lines based on the shattering incidence and severity

https://doi.org/10.17221/20/2020-CJGPBCitation:Krisnawati A., Soegianto A., Waluyo B., Kuswanto K. (2020): The pod shattering resistance of soybean lines based on the shattering incidence and severity. Czech J. Genet. Plant Breed., 56: 111-122.
download PDF

The study is aimed at evaluating the pod shattering resistance of F8 soybean lines based on the shattering incidence and shattering severity. The materials consist of fourteen F8 soybean lines and two check cultivars. The pod shattering incidence was examined by using the oven-dry method, meanwhile, the shattering severity was evaluated based on the severity of the pod opening. The pod shattering resistance based on the shattering incidence resulted in five resistant lines (7–10% shattering), seven moderate lines (13–23% shattering), one susceptible line (53% shattering), and one very susceptible line (100% shattering). The pod shattering resistance based on the shattering severity showed that the pod opening on the ventral side differed between the lines and between the shattering degree, and it tends to form sigmoid curves with a different peak position for each shattering degree. The shattering severity of the resistant, moderate, and susceptible lines reached a peak at 60 °C, 50 °C, and 40 °C, respectively. A longer pod length indicated by the length of the dorsal (r = 0.827**) and ventral (r = 0.880**) sides of the pod, a higher total pod weight (0.827**), and a larger seed size (0.794**) will increase the degree of susceptibility to pod shattering. Those characteristics were considered to be the ones that should be used as the selection criteria in the breeding programme for pod shattering resistance in soybeans.

References:
Agrawal A.P., Basarkar P.W., Salimath P.M., Patil S.A. (2002): Role of cell wall-degrading enzymes in pod shattering process of soybean Glycine max (L) Merrill. Current Science, 82: 58–61.
 
AVRDC (1979): Soybean Report. Shanhwa, Asian Vegetable Research and Development Centre.
 
Bara N., Khare D., Srivastava A.N. (2013): Studies on the factors affecting pod shattering in soybean. Indian Journal of Genetics and Plant Breeding, 73: 270–277. https://doi.org/10.5958/j.0975-6906.73.3.040
 
Bhor T.J., Chimote V.P., Deshmukh M.P. (2014): Inheritance of pod shattering in soybean [Glycine max (L.) Merrill]. Electric Journal of Plant Breeding, 5: 671–676.
 
Carlson J.B., Lersten N.R. (2004): Reproductive morphology. In: Boema H.R., Specht J.E. (eds.): Soybeans: Improvement, Production, and Uses. Agronomy Monograph No. 16. Madison, ASA, CSSA, and SSSA.
 
Caviness C.E. (1965): Effects of relative humidity on pod dehiscence in soybeans. Crop Science, 5: 511–513.
 
Christiansen L.C., Degan F.D., Ulvskov P., Borkhardt B. (2002): Examination of the dehiscence zone in soybean pods and isolation of a dehiscence-related endopolygalacturonase gene. Plant, Cell and Environment, 25: 479–490. https://doi.org/10.1046/j.1365-3040.2002.00839.x
 
Dong Y., Wang Y. (2015): Seed shattering: from models to crops. Frontiers in Plant Science, 6: 476. https://doi.org/10.3389/fpls.2015.00476
 
Dong Y., Yang X., Liu J., Wang B., Liu B., Wang Y. (2014): Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nature Communications, 5: 3352. https://doi.org/10.1038/ncomms4352
 
Dong R., Dong D., Luo D., Zhou Q., Chai X., Zhang J., Xie W., Liu W., Dong Y., Wang Y., Liu Z. (2017): Transcriptome analyses reveal candidate pod shattering-associated genes involved in the pod ventral sutures of common vetch (Vicia sativa L.). Frontiers in Plant Science, 8: 649. https://doi.org/10.3389/fpls.2017.00649
 
Funatsuki H., Suzuki M., Hirose A., Inaba H., Yamada T., Hajika M., Komatsu K., Katayama T., Sayama T., Ishimoto M., Fujino K. (2014): Molecular basis of a shattering resistance boosting global dissemination of soybean. Proceedings of the National Academy of Sciences of the USA, 111: 17797–17802. https://doi.org/10.1073/pnas.1417282111
 
Gaikwad A.P., Bharud R.W. (2018): Effect of harvesting stages and biochemical factors on pod shattering in soybean, Glycine max (L.) Merrill. International Journal of Current Microbiology and Applied Sciences, 7: 1015–1026.  https://doi.org/10.20546/ijcmas.2018.711.117
 
Gan Y., Malhi S.S., Brandt S.A., McDonald C.L. (2008): Assessment of seed shattering resistance and yield loss in five oilseed crops. Canadian Journal of Plant Science, 88: 267–270. https://doi.org/10.4141/CJPS07028
 
Han J., Han D., Guo Y., Yan H., Wei Z., Tian Y., Qiu L. (2019): QTL mapping pod dehiscence resistance in soybean (Glycine max L. Merr.) using specific-locus amplified fragment sequencing. Theoretical and Applied Genetics, 132: 2253–2272. https://doi.org/10.1007/s00122-019-03352-x
 
Hu D., Kan G., Hu W., Li Y., Hao D., Li X., Yang H., Yang Z., He X., Huang F., Yu D. (2019): Identification of loci and candidate genes responsible for pod dehiscence in soybean via genome-wide association analysis across multiple environments. Frontiers in Plant Science, 10: 811. https://doi.org/10.3389/fpls.2019.00811
 
Kadkol G.P., Beilharz V.C., Halloran G.M., MacMillan R.H. (1986): Anatomical basis of shatter-resistance in the oilseed Brassicas. Australian Journal of Botany, 34: 595–601. https://doi.org/10.1071/BT9860595
 
Kadkol G.P., Halloran G.M., MacMillan R.H., Caviness C.E. (1989): Shatter resistance in crop plants. Critical Reviews in Plant Sciences, 8: 169–188. https://doi.org/10.1080/07352688909382274
 
Kataliko R.K., Kimani P.M., Muthomi J.W., Wanderi W.S., Olubayo F.M., Nzuve F.M. (2019): Resistance and correlation of pod shattering and selected agronomic traits in soybeans. Journal of Plant Studies, 8: 39–48. https://doi.org/10.5539/jps.v8n2p39
 
Krisnawati A., Adie M.M. (2017a): Variability on morphological characters associated with pod shattering resistance in soybean. Biodiversitas, 18: 73–77. https://doi.org/10.13057/biodiv/d180111
 
Krisnawati A., Adie M.M. (2017b): Identification of soybean genotypes for pod shattering resistance associated with agronomical and morphological characters. Biosaintifika, 9: 193–200. https://doi.org/10.15294/biosaintifika.v9i2.8722
 
Krisnawati A., Soegianto A., Waluyo B., Kuswanto (2019a): Selection of F6 soybean population for pod shattering resistance. Biodiversitas, 20: 3340–346. https://doi.org/10.13057/biodiv/d201129
 
Krisnawati A., Adie M.M., Soegianto A., Waluyo B., Kuswanto (2019b): Pod shattering resistance and agronomic traits in F5 segregating populations of soybean. SABRAO Journal of Breeding and Genetics, 51: 266–280.
 
Liu X., Tu B., Zhang Q., Herbert S.J. (2019): Physiological and molecular aspects of pod shattering resistance in crops. Czech Journal of Genetics and Plant Breeding, 55: 87–92. https://doi.org/10.17221/104/2018-CJGPB
 
Metcalfe D.S., Johnson I.J., Shaw R.H. (1957): The relation between pod dehiscence, relative humidity and moisture equilibrium in birdsfoot trefoil, Lotus corniculatus. Agronomy Journal, 49: 130–134. https://doi.org/10.2134/agronj1957.00021962004900030006x
 
Mohammed H., Akromah R., Abudulai M., Mashark S.A., Issah A. (2014): Genetic analysis of resistance to pod shattering in soybean. Journal of Crop Improvement, 28: 17–26.  https://doi.org/10.1080/15427528.2013.853013
 
Morgan C.L., Bruce D.M., Child R.D., Ladbroke Z.L., Arthur A.E. (1998): Genetic variation for silique shatter resistance among lines of oilseed rape developed from synthetic B. napus. Field Crops Research, 58: 153–165.  https://doi.org/10.1016/S0378-4290(98)00099-9
 
Ogutcen E., Pandey A., Khan M.K., Marques E., Penmetsa R.V., Kahraman A., von Wettberg E.J.B. (2018): Pod shattering: a homologous series of variation underlying domestication and an avenue for crop improvement. Agronomy, 8: 137.  https://doi.org/10.3390/agronomy8080137
 
Philbrook B., Oplinger E.S. (1989): Soybean field losses as influenced by harvest delays. Agronomy Journal, 81: 251–258.  https://doi.org/10.2134/agronj1989.00021962008100020023x
 
Romkaew J., Umezaki T. (2006): Pod dehiscence in soybean: assessing methods and varietal difference. Plant Production Science, 9: 373–382. https://doi.org/10.1626/pps.9.373
 
Romkaew J., Umezaki T., Suzuki K., Nagaya Y. (2007): Pod dehiscence in relation to pod position and moisture content in soybean. Plant Production Science, 10: 292–296.  https://doi.org/10.1626/pps.10.292
 
Romkaew J., Nagaya Y., Goto M., Suzuki K., Umezaki T. (2008): Pod dehiscence in relation to chemical components of pod shell in soybean. Plant Production Science, 11: 278–282.  https://doi.org/10.1626/pps.11.278
 
Spence J., Vercher Y., Gates P., Harris N. (1996): Pod shatter in Arabidopsis thaliana, Brassica napus and B. juncea. Journal of Microscopy, 181: 195–203.  https://doi.org/10.1046/j.1365-2818.1996.111391.x
 
Suzuki M., Fujino K., Funatsuki H.A. (2009): Major soybean QTL, qPDH1, controls pod dehiscence without marked morphological change. Plant Production Science, 12: 217–223. https://doi.org/10.1626/pps.12.217
 
Tiwari S.P., Bhatnagar P.S. (1991): Pod shattering as related to other agronomic attributes in soybean. Tropical Agriculture, 68: 102–103.
 
Tiwari S.P., Bhatia V.S. (1995): Characterization of pod anatomy associated with resistance to pod-shattering in soybeans. Annals of Botany, 72: 483–85.  https://doi.org/10.1006/anbo.1995.1123
 
Tsuciya T. (1987): Physiological and genetic analysis of pod shattering in soybeans. Japan Agricultural Research Quarterly, 21: 166–175.
 
Tu B., Liu C., Wang X., Li Y., Zhang Q., Liu X., Herbert S.J. (2019): Greater anatomical differences of pod ventral suture in shatter-susceptible and shatter resistant soybean cultivars. Crop Science, 59: 2784–2793. https://doi.org/10.2135/cropsci2019.04.0231
 
Tukamuhabwa P., Dashiell K.E., Rubaihayo P., Nabasirye M. (2002): Determination of field yield loss and effect of environment on pod shattering in soybean. African Crop Science Journal, 10: 203–209.
 
Yamada T., Funatsuki H., Hagihara S., Fujita S., Tanaka Y., Tsuji H., Hajika M. (2009): A major QTL, qPDH1, is commonly involved in shattering resistance of soybean cultivars. Breeding Science, 59: 435–440. https://doi.org/10.1270/jsbbs.59.435
 
Zhang J., Singh A.K. (2020): Genetic control and geo-climate adaptation of pod dehiscence provide novel insights into soybean domestication. Genes Genomes Genetics, 10: 545–554. https://doi.org/10.1534/g3.119.400876
 
Zhang L., Boahen S. (2010): Evaluation of critical shattering time of early-maturity soybeans under early soybean production system. Agriculture and Biology Journal of North America, 1: 440–447.  https://doi.org/10.5251/abjna.2010.1.4.440.447
 
Zhang L., Bellalloui N. (2012): Effects of planting dates on shattering patterns under early soybean production system. American Journal of Plant Sciences, 3: 119–124. https://doi.org/10.4236/ajps.2012.31013
 
Zhang Q., Tu B., Liu C., Liu X. (2018): Pod anatomy, morphology and dehiscing forces in pod dehiscence of soybean (Glycine max (L.) Merrill). Flora, 248: 48–53. https://doi.org/10.1016/j.flora.2018.08.014
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti