Pea transformation: History, current status and challenges

https://doi.org/10.17221/24/2022-CJGPBCitation:

Ludvíková M., Griga M. (2022): Pea transformation: History, current status and challenges. Czech J. Genet. Plant Breed., 58: 127–161.

download PDF

This review recapitulates the history, important milestones, the current status, and the perspectives of the pea (Pisum sativum L.) transformation as a tool for pea crop breeding. It summarises the developments of the pea transformation from the first methodological experiments to achieving the complete transformation and regeneration of genetically modified (GM) plants, transformation with the first genes of interest (GOI), to recent techniques of targeted genome editing. We show how recent biotechnological methods and genetic engineering may contribute to pea breeding in order to speed up the breeding process and for the creation of new pea cultivars. The focus is laid on genetic engineering which represents an excellent technology to enhance the pea gene pool with genes of interest which are not naturally present in the pea genome. Different methods of pea transformation are mentioned, as well as various GOI that have been used for pea transformation to date, all aimed at improving transgenic pea traits. Tolerance to herbicides or resistance to viruses, fungal pathogens, and insect pests belong, among others, to the pea traits that have already been modulated by methods of genetic engineering. The production of phytopharmaceuticals is also an important chapter in the use of genetically modified peas. We compare different methods of introducing transgenes to peas and also the usage of different selective and reporter genes. The transformation of other major legumes (soybeans, beans) is marginally mentioned. The effect of genetically modified (GM) peas on animal health (feeding tests, allergenicity) is summarised, the potential risks and benefits of pea modification are evaluated and also the prime expectations of GM peas and the real current state of this technology are compared. Unfortunately, this technology or, more precisely, the products created by this technology are under strict (albeit not scientifically-based) legislative control in the European Union.

References:
Aftabi M., Negawo A.T., Hassan F. (2018): Improved protocol for Agrobacterium-mediated transformation of pea (Pisum sativum). Molecular Biology, 7: 1000202.
 
Al Amin N., Ahmad N., Wu N., Pu X., Ma T., Du Y., Bo X., Wang N., Sharif R., Wang P. (2019): CRISPR-Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine max L.). BMC Biotechnology, 19: 9.  https://doi.org/10.1186/s12896-019-0501-2
 
Ali Z.N., Naseem S., Inam-ul-Haq M., Jacobsen H.J. (2015): Soil bacteria conferred positive relationship and improved salt stress tolerance in transgenic pea (Pisum sativum L.) harboring Na+/H+ antiporter. Turkish Journal of Botany, 39: 962–972. https://doi.org/10.3906/bot-1505-50
 
Ali Z., Saeed W., Naseem S., Ahmad F., Akrem A., Yasmeen N., Jacobsen H.J. (2018): Phenotypic evaluation of transgenic peas (Pisum sativum L.) harboring AtNHX1 demonstrates stable gene expression and conserved morphology in subsequent generations. Turkish Journal of Botany, 42: 150–158. https://doi.org/10.3906/bot-1705-23
 
Ambrose S.H., Butler B.M., Hanson D.B., Hunter-Anderson R.L., Krueger H.W. (1997): Stable isotopic analysis of human diet in the Marianas Archipelago, Western Pacific. American Journal of Physical Anthropology, 104: 343–361. https://doi.org/10.1002/(SICI)1096-8644(199711)104:3<343::AID-AJPA5>3.0.CO;2-W
 
Amian A., Papenbrock J., Jacobsen H.-J., Hassan F. (2011): Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (chitinase and glucanase). GM Crops, 2: 104–109.  https://doi.org/10.4161/gmcr.2.2.16125
 
Aragão F.J.L. (2014): GM plants with RNAi-golden mosaic resistant bean. BMC Proceedings, 8: O24.
 
Aragão F., Ribeiro S., Barros L., Brasileiro A.C.M., Maxwell D.P., Rech E.L., Faria J.C. (1998): Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden mosaic geminivirus. Molecular Breeding, 4: 491–499. https://doi.org/10.1023/A:1009613607559
 
Arun M., Subramanyam K., Theboral J., Sivanandhan G., Rajesh M., Kapil Dev G., Jaganath B., Manickavasagam M., Girija S., Ganapathi A. (2014): Transfer and targeted overexpression of γ-tocopherol methyltransferase (γ-TMT) gene using seed-specific promoter improves tocopherol composition in Indian soybean cultivars. Applied Biochemistry and Biotechnology, 172: 1763–1776. https://doi.org/10.1007/s12010-013-0645-9
 
Atif R.M., Patat-Ochatt E., Svabova L., Ondrej V., Klenoticova H., Jacas L., Griga M., Ochatt S. (2013): Gene transfer in legumes. Progress in Botany, 74: 37–100.
 
Atkins C., Smith P.M.C. (1997): Genetic transformation and regeneration of legumes. In: Legocki A., Bothe H., Puhler A. (eds.): Biological Fixation of Nitrogen for Ecology and Sustainable Agriculture. NATO ASI Series, Vol. 39, Berlin, Springer: 283–304.
 
Babaoglu M., Davey M., Power J. (2000): Genetic engineering of grain legumes: Key transformation events. AgBiotechNet ABN, 2.
 
Bao A., Chen H., Chen L., Chen S., Hao Q., Guo W., Qiu D., Shan Z., Yang Z., Yuan S., Zhang C., Zhang X., Liu B., Kong F., Li X., Zhou X., Tran L.P., Cao D. (2019): CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biology, 19: 131. https://doi.org/10.1186/s12870-019-1746-6
 
Bastianelli D., Carrouee B., Grosjean F., Peyonnet C., Revol N., Weiss P., Wiseman J. (1995): Peas: Utilization in Animal Feeding. Paris, UNIP-ITCP.
 
Bean S., Gooding P.S., Mullineaux P.M., Davies D.R. (1997): A simple system for pea transformation. Plant Cell Reports, 16: 513–519. https://doi.org/10.1007/BF01142315
 
Belhaj K., Chaparro-Garcia A., Kamoun S., Nekrasov V. (2013): Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 9: 39. https://doi.org/10.1186/1746-4811-9-39
 
Ben-Ze'ev N., Zohary D. (1973): Species relationships in the genus Pisum. Israel Journal of Botany, 22: 73–91.
 
Bhattacharrya M.K., Smith A.M., Ellis T.H.N., Hedley C.L., Martin C. (1990): The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell, 60: 115–122. https://doi.org/10.1016/0092-8674(90)90721-P
 
Bhowmik P.K., Basu S. (2008): Current developments, progress, issues and concerns in producing transgenic peas (Pisum sativum L.). Transgenic Plant Journal, 2: 138–150.
 
Bhowmik P., Konkin D., Polowick P., Hodgins C.L., Subedi M., Xiang D., Yu B., Patterson N., Rajagopalan N., Babic V., Ro D.-K., Tar'an B., Bandara M., Smyth S.J., Cui Y., Kagale, S. (2021): CRISPR/Cas9 gene editing in legume crops: Opportunities and challenges. Legume Science, 3: e96.  https://doi.org/10.1002/leg3.96
 
Bibikova M., Golic M., Golic K.G., Carroll D. (2002): Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 161: 1169–1175. https://doi.org/10.1093/genetics/161.3.1169
 
Blixt S. (1972): Mutation genetics in Pisum. Agri Hortique Genetica, 30: 1.
 
Bogdanova V.S., Berdnikov V.A. (2000): A study of potential ability for cross-pollination in pea originating from different parts of the world. Pisum Genetics, 32: 16–17.
 
Boogaart T. van den, Maule A.J., Davies J.W., Lomonossoff G.P. (2004): Sources of target specificity associated with the recovery against Pea seed-borne mosaic virus infection mediated by RNA silencing in pea. Molecular Plant Pathology, 5: 37–43. https://doi.org/10.1111/j.1364-3703.2004.00204.x
 
Böttinger P., Steinmetz A., Schieder O., Pickard T. (2001): Agrobacterium-mediated transformation of Vicia faba. Molecular Breeding, 8: 243–254. https://doi.org/10.1023/A:1013711210433
 
Byrne O., Galwey N., Hardie H. (2002): Searching for molecular markers for resistance to pea weevil. In: McComb J.A. (ed.): Plant Breeding for the 11th Millennium: Proceedings of the 12th Australasian Plant Breeding Conference. Perth, Sept 15–20, 2002: 362.
 
Byrne O.M., Hardie D.C., Khan T.N., Speijers J., Yan G. (2008): Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross. Australian Journal of Agricultural Research, 59: 854–862. https://doi.org/10.1071/AR07353
 
Chakraborty U., Sarkar B., Chakraborty B.N. (2003): Protection of soybean rot by Bradyrhizobium japonicum and Trichoderma harzianum associated with changes in enzyme activities and phytoalexin production. Journal of Mycology and Plant Pathology, 33: 21–25.
 
Charity J.A., Anderson M.A., Bittisnich D.J., Whitecross M., Higgins T.J.V. (1999): Transgenic tobacco and peas expressing a proteinase inhibitor from Nicotiana alata have increased insect resistance. Molecular Breeding, 5: 357–365.  https://doi.org/10.1023/A:1009633710224
 
Chen H., Bodulovic G., Hall P.J., Moore A., Higgins T.J., Djordjevic M.A., Rolfe B.G. (2009): Unintended changes in protein expression revealed by proteomic analysis of seeds from transgenic pea expressing a bean alpha-amylase inhibitor gene. Proteomics, 9: 4406–4415.  https://doi.org/10.1002/pmic.200900111
 
Chiera J.M., Finer J.J., Grabau E.A. (2004): Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability. Plant Molecular Biology, 56: 895–904. https://doi.org/10.1007/s11103-004-5293-6
 
Choudhury A., Rajam M.V. (2021): Genetic transformation of legumes: An update. Plant Cell Reports, 40: 1813–1830. https://doi.org/10.1007/s00299-021-02749-7
 
Chowrira G.M., Akella V., Lurquin P.F. (1995): Electroporation-mediated gene transfer into intact nodal meristems in planta. Molecular Biotechnology, 3: 17–23. https://doi.org/10.1007/BF02821331
 
Chowrira G.M., Akella V., Fuerst P.E., Lurquin P.F. (1996): Transgenic grain legumes obtained by in planta electroporation-mediated gene transfer. Molecular Biotechnology, 5: 85–96. https://doi.org/10.1007/BF02789058
 
Chowrira G.M., Cavileer T.D., Gupta S.K., Lurquin P.F., Berger P.H. (1998): Coat protein resistance to pea enation mosaic virus in transgenic Pisum sativum L. Transgenic Research, 7: 265–271.  https://doi.org/10.1023/A:1008874129407
 
Clement S.L. (1992): On the function of pea flower feeding by Bruchus pisorum. Entomologia Experimentalis et Applicata, 63: 115–121. https://doi.org/10.1111/j.1570-7458.1992.tb01566.x
 
Clement S.L., Lathrop L.A., Muehlbauer F.J. (1988): More on the pea's nectaries and insect visitors. The Pisum Newsletter, 20: 3–4.
 
Collins C., Eason P., Dunshea F., Higgins T.J., King R. (2006): Starch but not protein digestibility is altered in pigs fed transgenic peas containing alpha-amylase inhibitor. Journal of the Science of Food and Agriculture, 86: 1894–1899.  https://doi.org/10.1002/jsfa.2551
 
Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. (2013): Multiplex genome engineering using CRISPR/Cas systems. Science, 339: 819–823.  https://doi.org/10.1126/science.1231143
 
Conn H.J. (1942): Validity of the genus Alcaligenes. Journal of Bacteriology, 44: 353–360. https://doi.org/10.1128/jb.44.3.353-360.1942
 
Cooper D.C. (1938): Embryology of Pisum sativum. Botanical Gazette, 100: 123–132. https://doi.org/10.1086/334769
 
Coyne C., Kumar S., Wettberg E., Marques E., Berger J., Redden R., Ellis N., Brus J., Zablatzká L., Smykal P. (2020): Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement. Legume Science, 2: e36.  https://doi.org/10.1002/leg3.36
 
Cruz A., Aragão F. (2013): RNAi-based enhanced resistance to Cowpea severe mosaic virus and Cowpea aphid-borne mosaic virus in transgenic cowpea. Plant Pathology, 63: 831–837.
 
Curtin S.J., Xiong Y., Michno J.M., Campbell B.W., Stec A.O., Čermak T., Starker C., Voytas D.F., Eamens A.L., Stupar R.M. (2018): CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. Plant Biotechnology Journal, 16: 1125–1137. https://doi.org/10.1111/pbi.12857
 
Davies D.R., Berry G.J., Heath M.C., Dawkins T.C.K. (1985): Peas (Pisum sativum L.). In: Summerfield R.J., Roberts E.H. (eds.): Grain Legume Crops. Collins, London: 147–198.
 
Davies D.R., Hamilton J., Mullineaux P. (1993): Transformation of peas. Plant Cell Reports, 12: 180–183.  https://doi.org/10.1007/BF00239102
 
Davis P.H. (1970): Pisum L. In: Davis P.H. (ed.): Flora of Turkey and the East Aegean Islands. Vol. 3, Edinburgh, Edinburgh University Press: 370–373.
 
de Kathen A., Jacobsen H.-J. (1990): Agrobacterium tumefaciens-mediated transformation of Pisum sativum L. using binary and cointegrate vectors. Plant Cell Reports, 9: 276–279. https://doi.org/10.1007/BF00232301
 
de Kathen A., Jacobsen H.-J. (1993): Transformation of pea (Pisum sativum L.). In: Bajaj Y.P.S. (ed.): Biotechnology in Agriculture and Forestry. Vol. 23, Plant Protoplasts and Genetic Engineering IV, Berlin, Springer-Verlag: 331–347.
 
de Ronde J.A., Spreeth M.H., Cress W.A. (2000): Effect of antisense L-1-pyrroline-5-carboxylate reductase transgenic soybean plants subjected to osmotic and drought stress. Plant Growth Regulation, 32: 13–26. https://doi.org/10.1023/A:1006338911617
 
de Ronde J.A., Cress W.A., Van Staden J. (2001): Interaction of osmotic and temperature stress on transgenic soybean. South African Journal of Botany, 67: 655–660. https://doi.org/10.1016/S0254-6299(15)31196-0
 
de Ronde J.A., Cress W.A., Kruger G.H.J., Strasser R.J., van Staden J. (2004): Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene during heat and drought stress. Journal of Plant Physiology, 161: 1211–1224. https://doi.org/10.1016/j.jplph.2004.01.014
 
de Sousa-Majer M.J. (2001): Evaluation of Efficacy of Transgenic Peas Against Pea Weevil. A Final Report for the Grains Research Committee of Western Australia. GRC Project No.99/00-03. Perth, Department of Agriculture: 1–8.
 
de Sousa-Majer M.J., Hardie D.C., Roush R.T. (1999): Evaluation of efficacy of transgenic peas against the pea weevil (Bruchus pisorum) and the development of growing strategies that minimise the possibility of weevils developing resistance. In: Proc. Intern. Symp. Dev. Agric. Life Science and Technology toward 21st Century. Kyong Nam, Miryang: 4.
 
de Sousa-Majer M.J., Turner N.C., Hardie D.C., Morton R., Higgins T.J.V. (2000): Response of transgenic peas containing a seed specific a-amylase inhibitor gene to heat and water stresses. In: Abstract Book II, 21th Int. Congr. of Entomology, Brazil: 1007.
 
de Sousa-Majer M.J., Roush R.T., Turner N.C., Hardie D.C., Morton R., Higgins T.J.V. (2001): Field evaluation of transgenic peas for the design of strategies to minimise the evolution of resistance in pea weevil (Bruchus pisorum). In: Abstract Book IAC-Rothamsted Resistance 2001 Conference, Rothamsted: 120.
 
de Sousa-Majer M.J., Hardie D.C., Turner N.C., Higgins T.J. (2007): Bean alpha amylase inhibitor in transgenic peas inhibit the development of pea weevil larvae. Journal of Economic Entomology, 100: 1416–1422. https://doi.org/10.1603/0022-0493(2007)100[1416:BAIITP]2.0.CO;2
 
Dita M., Rispail N., Prats E., Rubiales D., Singh K. (2006): Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica, 147: 1–24.  https://doi.org/10.1007/s10681-006-6156-9
 
Doležel J., Greilhuber J. (2010): Nuclear genome size. Are we getting closer? Cytometry, 77: 635–642.
 
Donaldson P.A., Simmonds D.H. (2000): Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Reports, 19: 478–484. https://doi.org/10.1007/s002990050759
 
Dostálová R., Seidenglanz M., Griga M. (2004): Monitoring of environmental risks of genetically modified pea (Pisum sativum L.) in CR: Model solution. In: Ovesná J., Kučera L. (eds.): Problems of Biological Safety, GMOs and International Involvement of the Czech Republic. Prague, Crop Research Institute: 25–34. (in Czech)
 
Dostálová R., Seidenglanz M., Griga M. (2005): Simulation and assessment of possible environmental risks associated with release of genetically modified peas (Pisum sativum L.) into environment in Central Europe. Czech Journal of Genetics and Plant Breeding, 41: 51–63. https://doi.org/10.17221/3672-CJGPB
 
Dostálová R., Smýkal P., Seidenglanz M., Griga M. (2009): Field assessment of cross-pollination rate in pea (Pisum sativum L.) as a background for release of genetically modified pea into the environment. In: Sehnal F., Drobník J. (eds.): White Book of Genetically Modified Crops. EU Regulations and Research Experience from the Czech Republic. České Budějovice, Biology Centre AS CR: 59.
 
Droste A., Pasquali G., Bodanese-Zanettini M. (2000): Integrated bombardment and Agrobacterium transformation system: An alternative method for soybean transformation. Plant Molecular Biology Reporter, 18: 51–59.  https://doi.org/10.1007/BF02825294
 
Du H., Zeng X., Zhao M., Cui X., Wang Q., Yang H., Cheng H., Yu D. (2016): Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. Journal of Biotechnology, 217: 90–97. https://doi.org/10.1016/j.jbiotec.2015.11.005
 
Duke J.A. (1981): Handbook of Legumes of World Economic Importance. New York, Plenum.
 
Ezhova T.A., Bagrova A.M., Gostimskij S.A. (1985): Shoot transformation in callus tissues derived from stem apices, epicotyls, stem internodes, and leaves of various pea genotypes. Fiziologija Rastenij, 32: 513–520. (in Russian)
 
Fan Y., Li W., Wang J., Yajun F., Wei L., Junjie W., Jingying L., Meiying Y., Duo X., Xiaojuan Z., Xingzhi W. (2011): Efficient production of human acidic fibroblast growth factor in pea (Pisum sativum L.) plants by agroinfection of germinated seeds. BMC Biotechnology, 11: 45. https://doi.org/10.1186/1472-6750-11-45
 
FAO (2021): FAOSTAT. Available at https://www.fao.org/faostat/en/#home (accessed Nov 17, 2021).
 
Fehr W.R. (1993): Principles of Cultivar Development. Vol. I, Theory and Technique. New York, Macmillan Publishing Company.
 
Finer J.J., McMullen M.D. (1991): Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In vitro Cellular and Developmental Biology – Plant, 27: 175–182.  https://doi.org/10.1007/BF02632213
 
Flores T., Karpova O., Su X., Zeng P., Bilyeu K., Sleper D.A., Nguyen H.T., Zhang Z.J. (2008): Silencing of GmFAD3 gene by siRNA leads to low alpha-linolenic acids (18:3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Research, 5: 839–850.  https://doi.org/10.1007/s11248-008-9167-6
 
Furutani N., Hidaka S., Kosaka Y., Shizukawa Y., Kanematsu S. (2006): Coat protein-mediated resistance to soybean mosaic virus in transgenic soybean. Breeding Science, 56: 119–124. https://doi.org/10.1270/jsbbs.56.119
 
Gaikwad A., Tewari K., Kumar D., Chen W., Mukherjee S.K. (1999): Isolation and characterisation of the cDNA encoding aglycosylated accesory protein of pea chloroplast DNA polymerase. Nucleic Acids Research, 27: 3120–3129. https://doi.org/10.1093/nar/27.15.3120
 
Gatti I., Guindón F., Bermejo C., Espósito A., Cointry E. (2016): In vitro tissue culture in breeding programs of leguminous pulses: Use and current status. Plant Cell, Tissue and Organ Culture, 127: 543–559. https://doi.org/10.1007/s11240-016-1082-6
 
Ghosh G., Ganguly S., Purohit A., Chaudhuri R.K., Das S., Chakraborti D. (2017): Transgenic pigeonpea events expressing Cry1Ac and Cry2Aa exhibit resistance to Helicoverpa armigera. Plant Cell Reports, 36: 1037–1051.  https://doi.org/10.1007/s00299-017-2133-0
 
Giordano L.B., Marques M.R.C., Melo P.E. (1991): Estimates of natural outcrossing in peas in Brasilia – DF. Horticultura Brasileira, 9: 82–83. (in Portuguese)
 
Goldenberg J.B. (1965): “Afila”, a new mutation in pea (Pisum sativum L.). Boletin Genetico, 1: 27–31.
 
Govorov L.I. (1928): The peas of Afghanistan. Trudy po Prikladnoj Botanike, Genetike i Selekcii, 19: 517–522. (in Russian)
 
Graham P., Vance C. (2003): Legumes: Importance and constraints to greater use. Plant Physiology, 131: 872–877.  https://doi.org/10.1104/pp.017004
 
Grant J.E., Cooper P.A. (2003): Genetic transformation in pea. In: Jaiwal P.K., Singh R.P. (eds.): Applied Genetics of Leguminosae Biotechnology. Focus on Biotechnology. Vol. 10B, Dordrecht, Springer: 23–34.
 
Grant J., Cooper P. (2006): Peas (Pisum sativum L.). Methods in Molecular Biology, 343: 337–346.
 
Grant J.E., Cooper P.A., McAra A.E., Frew T.J. (1995): Transformation of peas (Pisum sativum L.) using immature cotyledons. Plant Cell Reports, 15: 254–258.  https://doi.org/10.1007/BF00193730
 
Grant J.E., Cooper P.A., Gilpin J.B., Hoglund S.J., Reader J.K., Pither-Joyce M.D., Timmerman-Vaughan G.M. (1998): Kanamycin is effective for selecting transformed peas. Plant Science, 139: 159–164. https://doi.org/10.1016/S0168-9452(98)00184-8
 
Grazziotin M., Cabral G., Ibrahim A., Machado R., Aragão F. (2020): Expression of the Arcelin 1 gene from Phaseolus vulgaris L. in cowpea seeds (Vigna unguiculata L.) confers bruchid resistance. Annals of Applied Biology, 176: 268–274.
 
Griga M., Novák F.J. (1990): Pea (Pisum sativum L.). In: Bajaj Y.P.S. (ed.): Legumes and Oilseed Crops I. Biotechnology in Agriculture and Forestry, Vol. 10, Berlin, Heidelberg, Springer: 65–99.
 
Griga M., Smýkal P., Dostálová R., Seidenglanz M. (2008): Field assesment of outcrossing rate in pea (Pisum sativum L.), a cleistogamic crop, as a background for release of genetically modified pea into environment. In: Symposium Handbook of the 10th Int. Symp. Biosafety of Genetically Modified Organisms (ISBGMO), Wellington, Nov 16–21, 2008: 110.
 
Griga M., Švábová L., Sehnal F., Hanáček P., Reinöhl V., Horáček J. (2009): Development of transgenic pea (Pisum sativum L.) lines for improved tolerance to insect pests and fungal pathogenes. In: Sehnal F., Drobník J. (eds.): White Book of Genetically Modified Crops. České Budějovice, Biology Centre AS CR: 38.
 
Gritton E.T. (1980): Field pea. In: Fehr W.R., Hadley H.H. (eds.): Hybridization of Crop Plants. Madison, American Society of Agronomy: 347–356.
 
Hadi M.Z., McMullen M.D., Finer J.J. (1996): Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Reports, 15: 500–505.  https://doi.org/10.1007/BF00232982
 
Hamilton A.J., Baulcombe D.C. (1999): A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286: 950–952.  https://doi.org/10.1126/science.286.5441.950
 
Hanáček P., Reinöhl V., Švábová L., Horáček J., Griga M. (2008): Optimization of vectors with genes conferring resistance to insect pests and fungal pathogens, their functional proof on tobacco and utilization for pea transformation. In: Workshop Functional Genomics and Proteomics in Plant Breeding, Brno, MUAF: 28–34.
 
Hanáček P., Rohrer M., Reinöhl V., Procházka S., Šafářová D., Navrátil M., Horáček J., Švábová L., Smýkal P., Griga M. (2010): Use of GMO for lowering the pesticide contamination of raw materials and foodstuffs. Potravinarstvo – Scientific Journal for Food Industry, 4: 272–280. (in Czech)
 
Hanafy M., Pickardt T., Kiesecker H., Jacobsen J. (2005): Agrobacterium-mediated transformation of faba bean (Vicia faba L.) using embryo axes. Euphytica, 142: 227–236. https://doi.org/10.1007/s10681-005-1690-4
 
Hansen G., Wright M.S. (1999): Recent advances in the transformation of plants. Trends in Plant Science, 4: 226–231. https://doi.org/10.1016/S1360-1385(99)01412-0
 
Harland S.C. (1948): Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity, 2: 263–269. https://doi.org/10.1038/hdy.1948.15
 
Hassan F., Meens J., Jacobsen H.J., Kiesecker H. (2009): A family 19 chitinase (Chit30) from Streptomyces olivaceoviridis ATCC 11238 expressed in transgenic pea affects the development of T. harzianum in vitro. Journal of Biotechnology, 143: 302–308.  https://doi.org/10.1016/j.jbiotec.2009.08.011
 
Hassan F., Muller A., Jacobsen H. (2010): Gene stacking of antifungal genes in transgenic pea to enhance the level of resistance. In Vitro Cell Developmental Biology – Animal, 46: 1.
 
Hassan F., Noorian M.S., Jacobsen H.J. (2012): Effect of antifungal genes expressed in transgenic pea (Pisum sativum L.) on root colonization with Glomus intraradices. GM Crops Food, 3:301–309. https://doi.org/10.4161/gmcr.21897
 
Hedley C.L., Smith C.M., Ambrose M.J., Cook S., Wang T.L. (1986): An analysis of seed development in Pisum sativum. II. The effect of the r locus on the growth and development of the seed. Annals of Botany, 58: 371–379. https://doi.org/10.1093/oxfordjournals.aob.a087215
 
Hobbs S.L.A., Jackson J.A., Mahon J.D. (1989): Specificity of strain and genotype in the susceptibility of pea to Agrobacterium tumefaciens. Plant Cell Reports, 8: 274–277.  https://doi.org/10.1007/BF00274128
 
Homrich M.S., Wiebke-Strohm B., Weber R.L., Bodanese-Zanettini M.H. (2012): Soybean genetic transformation: A valuable tool for the functional study of genes and the production of agronomically improved plants. Genetics and Molecular Biology, 35: 998–1010.  https://doi.org/10.1590/S1415-47572012000600015
 
Hussey G., Gunn H.V. (1984): Plant production in pea (Pisum sativum L. cvs. Puget and Upton) from long-term callus with superficial meristems. Plant Science Letters, 37: 143–148.  https://doi.org/10.1016/0304-4211(84)90217-7
 
Hussey G., Johnson R.D., Warren S. (1989): Transformation of meristematic cells in the shoot apex of cultured pea shoots by Agrobacterium tumefaciens and A. rhizogenes. Protoplasma, 148: 101–105. https://doi.org/10.1007/BF02079328
 
Hwang H.-H., Yu M., Lai E.-M. (2017): Agrobacterium-mediated plant transformation: Biology and applications. The Arabidopsis Book, 15: e0186.
 
Islam N., Campbell P.M., Higgins T.J.V., Hirano H., Akhurst R.J. (2009): Transgenic peas expressing an α-amylase inhibitor gene from beans show altered expression and modification of endogenous proteins. Electrophoresis, 30: 1863–1868.  https://doi.org/10.1002/elps.200800717
 
Jacobsen H.J., Kysely W. (1985): Induction of in vitro regeneration via somatic embryogenesis in pea (Pisum sativum) and bean (Phaseolus vulgaris). In: Proc. Int. Symp. Gene Manipulation in Plant Breeding, Berlin (West), Sept 8–13, 1985: 445–448.
 
Jaranowski J.K. (1976): Gamma-ray induced mutations in Pisum arvense. Genetica Polonica, 17: 478–495.
 
Jefferson R.A., Kavanagh T.A., Bevan M.W. (1987): GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6: 3901–3907.  https://doi.org/10.1002/j.1460-2075.1987.tb02730.x
 
Jelenic S., Mitrikeski P.T., Papes D., Jelaska S. (2000): Agrobacterium-mediated transformation of broad bean Vicia faba L. Food Technology and Biotechnology, 38: 167–172.
 
Jones A.L., Johansen I.E., Bean S.J., Bach I., Maule A.J. (1998): Specifity of resistance to pea seed-borne mosaic potyvirus in transgenic peas expressing the viral replicase (Nib) gene. Journal of general Virology, 79: 3129–3137. https://doi.org/10.1099/0022-1317-79-12-3129
 
Jorasch P. (2020): Potential, challenges, and threats for the application of new breeding techniques by the private plant breeding sector in the EU. Frontiers in Plant Science, 11: 58211. https://doi.org/10.3389/fpls.2020.582011
 
Jordan M.C., Rempel H., Hobbs S.L.A. (1992): Genetic transformation of Pisum sativum L. via Agrobacterium tumefaciens or particle bombardment. In: Proc. 1st Conf. Grain Legumes, Angers: 115–116.
 
Kahlon J.G., Jacobsen H.-J., Chatterton S., Hassan F., Bowness R., Hall L.M. (2018): Lack of efficacy of transgenic pea (Pisum sativum L.) stably expressing antifungal genes against Fusarium spp. in three years of confined field trials. GM Crops and Food, 9: 90–108. https://doi.org/10.1080/21645698.2018.1445471
 
Karmakar S., Molla K.A., Gayen D., Karmakar A., Das K., Sarkar S.N., Datta K., Datta S.K. (2019): Development of a rapid and highly efficient Agrobacterium-mediated transformation system for pigeon pea [Cajanus cajan (L.) Millsp]. GM Crops and Food, 10: 115–138. https://doi.org/10.1080/21645698.2019.1625653
 
Kartha K.K., Gamborg O.L., Constabel F. (1974): Regeneration of pea (Pisum sativum L.) plants from shoot apical meristems. Zeitschrift für Pflanzenphysiologie, 72: 172–176. https://doi.org/10.1016/S0044-328X(74)80127-3
 
Kaur A., Sharma M., Sharma C., Kaur H., Kaur N., Sharma S., Arora R., Singh I., Sandhu J. (2016): Pod borer resistant transgenic pigeon pea (Cajanus cajan L.) expressing cry1Ac transgene generated through simplified Agrobacterium transformation of pricked embryo axes. Plant Cell, Tissue and Organ Culture, 127: 717–727.  https://doi.org/10.1007/s11240-016-1055-9
 
Khalafalla M., Rahman S.M., El-Shemy H., Nakamoto Y., Wakasa K., Ishimoto M. (2005): Optimization of particle bombardment conditions by monitoring of transient sGFP(S65T) expression in transformed soybean. Breeding Science, 55: 257–263. https://doi.org/10.1270/jsbbs.55.257
 
Kocsy G., Simon-Sarkadi L., Galiba G., de Ronde J.A. (2007): Transformation of soybean and use of transgenic lines in basic and applied research. Transgenic Plant Journal, 1: 129–144.
 
Kooistra E. (1962): On the differences between smooth and three types of wrinkled peas. Euphytica, 11: 357–373. https://doi.org/10.1007/BF00031985
 
Kotlarz A., Sujak A., Strobel W., Grzesiak W. (2011): Chemical composition and nutritive value of protein of the pea seeds – effect of harvesting year and variety. Journal of Fruit and Ornamental Plant Research, 75: 57–69. https://doi.org/10.2478/v10032-011-0018-2
 
Kraft M., Pleger F.L. (2001): Compendium of Pea Diseases and Pests. 2nd Ed., St. Paul, The American Phytopathological Society Press.
 
Krejčí P., Matušková P., Hanáček P., Reinöhl V., Procházka S. (2007): The transformation of pea (Pisum sativum L.): Applicable methods of Agrobacterium tumefaciens-mediated gene transfer. Acta Physiologiae Plantarum, 29: 157–163.  https://doi.org/10.1007/s11738-006-0020-3
 
Krishna G., Reddy P.S., Ramteke P.W., Rambabu P., Tawar K.B., Bhattacharya P. (2011): Agrobacterium-mediated genetic transformation of pigeon pea [Cajanus cajan (L.) Millsp.] for resistance to legume pod borer Helicoverpa armigera. Journal of Crop Science and Biotechnology, 14: 197–204.  https://doi.org/10.1007/s12892-010-0063-2
 
Kumar S., Tanti B., Patil B.L., Mukherjee S.K., Sahoo L. (2017): RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea. PLoS ONE, 12: e0186786.  https://doi.org/10.1371/journal.pone.0186786
 
Kunakh V.A., Voityuk L.I., Alkhimova E.G., Alpatova L.K. (1984): Production of callus tissues and induction of organogenesis in Pisum sativum. Soviet Plant Physiology, 31: 430–435.
 
Kysely W., Jacobsen H.J. (1990): Somatic embryogenesis from pea embryos and shoot apices. Plant Cell, Tissue and Organ Culture, 20: 7–14.  https://doi.org/10.1007/BF00034751
 
Ladizinsky G., Smartt J. (2000): Opportunities for improved adaptation via further domestication. In: Knight R. (ed.): Linking Research and Marketing Opportunities for Pulses in the 21st Century. Current Plant Science and Biotechnology in Agriculture. Vol. 34, Dordrecht, Springer: 257–263.
 
Lau O.S., Sun S.S.M. (2009): Plant seeds as bioreactors for recombinant protein production. Biotechnology, 27: 1015–1022.
 
Lee R.Y., Reiner D., Dekan G., Moore A.E., Higgins T.J., Epstein M.M. (2013a): Genetically modified α-amylase inhibitor peas are not specifically allergenic in mice. PLoS ONE, 8: e0052972. https://doi.org/10.1371/journal.pone.0052972
 
Lee H., Park S.Y., Zhang Z. (2013b): An overview of genetic transformation of soybean. In: Board J.E. (ed.): A Comprehensive Survey of International Soybean Research. London, IntechOpen: 489–506.
 
Lewis G.P., Schrire B., Mackinder B., Lock M. (2005): Legumes of the World. Richmond, Kew Royal Botanic Gardens.
 
Li H.Y., Zhu Y.M., Chen Q., Conner R.L., Ding X.D., Li J., Zhang B.B. (2004): Production of transgenic soybean plants with two anti-fungal protein genes via Agrobacterium and particle bombardment. Biologia Plantarum, 48: 367–374.  https://doi.org/10.1023/B:BIOP.0000041088.62614.76
 
Li T., Huang S., Zhao X., Wright D.A., Carpenter S., Spalding M.H., Weeks D.P., Yang B. (2011): Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Research, 39: 6315–6325. https://doi.org/10.1093/nar/gkr188
 
Li X., Higgins T.J.V., Bryden W.L. (2006): Biological response of broiler chickens fed peas (Pisum sativum L.) expressing the bean (Phaseolus vulgaris L.) α-amylase inhibitor transgene. Journal of the Science of Food and Agriculture, 86: 1900–1907. https://doi.org/10.1002/jsfa.2552
 
Liu S.-J., Wei Z.-M., Huang J.-Q. (2008): The effect of co-cultivation and selection parameters on Agrobacterium-mediated transformation of Chinese soybean varieties. Plant Cell Reports, 27: 489–498. https://doi.org/10.1007/s00299-007-0475-8
 
Loennig W.E. (1983): Cross-fertilization in peas. The Pisum Newsletter, 15: 40.
 
Loennig W.E. (1984): Cross-fertilization in peas under different ecological conditions. The Pisum Newsletter, 16: 38–40.
 
Loennig W.E. (1985): The peas' nectaries and insect visitors. The Pisum Newsletter, 17: 47–49.
 
Lutova L.A., Zabelina Y.K. (1988): Callus and shoot in vitro formation in different forms of peas (Pisum sativum L.). Genetica, 24: 1632–1640.
 
Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. (2013): RNA-guided human genome engineering via Cas9. Science, 339: 823–826.  https://doi.org/10.1126/science.1232033
 
Mallick M., Rashid A. (1989): Induction of multiple shoots from cotyledonary node of grain legumes pea and lentil. Biologia Plantarum, 31: 230–232.
 
Malmberg R.L. (1979): Regeneration of whole plants from callus culture of diverse genetic lines of Pisum sativum L. Planta, 146: 243–244.  https://doi.org/10.1007/BF00388239
 
Malysheva N.V., Pavlova Z.B., Chernysh N.S., Kravchenko L.V., Kislin Y.N., Chmelev V., Lutova L.A. (2001): Genetic transformation of pea (Pisum sativum). In: Bajaj Y.P.S. (ed.): Transgenic Crops II: Biotechnology in Agriculture and Forestry. Vol. 47, Berlin, Heidelberg Springer: 284–304.
 
Mares P., Jurikova T., Sochor J., Zeman L., Baron M., Mlcek J., Balla S. (2014): The influence of feeding GMO peas on growth of animal models. Potravinarstvo – Scientific Journal for Food Industry, 8: 20–24.  https://doi.org/10.5219/322
 
Maxted N. (2000): Are our germplasm collections museum items? In: Knigt R. (ed.): Linking Research and Marketing Opportunities for Pulses in the 21st century. Dortrecht, Kluwer Academic Publishers.
 
Maxted N., Ambrose M. (2001): Peas (Pisum L.). In: Maxted N., Bennett S.J. (eds.): Plant Genetic Resources of Legumes in the Mediterranean. Current Plant Science and Biotechnology in Agriculture, Vol. 39, Dordrecht, Springer: 181–190.
 
McPhee K., Abebe T., Kraft J.M., Muehlbauer F.J. (1999): Resistance to Fusarium wilt race 2 in the Pisum core collection. Journal of American Society of Horticulture Science, 124: 28–31.  https://doi.org/10.21273/JASHS.124.1.28
 
Mendel J.G. (1866): “Versuche über Pflanzenhybriden.” Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr, 1865 Abhandlungen: 3–47. (in English available at http://www.mendelweb.org/Mendel.plain.html)
 
Meldolesi A. (2010): Pea trials flee to US. Nature Biotechnology, 28: 8. https://doi.org/10.1038/nbt0110-8b
 
Meng Y., Hou Y., Wang H., Ji R., Liu B., Wen J., Niu L., Lin H. (2016): Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Plant Cell Reports, 36: 371–374. https://doi.org/10.1007/s00299-016-2069-9
 
Meng Y., Hou Y., Wang H., Ji R., Liu B., Wen J., Meng Y., Wang Ch., Yin P., Zhu B., Zhang P., Niu L., Lin H. (2019): Targeted mutagenesis by an optimized Agrobacterium‐delivered CRISPR/Cas9 system in the model legume Medicago truncatula. In: de Bruijn F. (ed.): The Model Legume Medicago truncatula. John Wiley & Sons, Inc.: 1015–1018.
 
Metry E.A., Ismail R.M., Hussien G.M., Nasr El Din T.M., El Itriby H.A. (2007): Regeneration and microprojectile-mediated transformation in Vicia faba L. Arab Journal of Biotechnology, 10: 23–36.
 
Michno J., Wang X., Liu J., Curtin S., Kono T., Stupar R. (2015): CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food, 6: 243–252. https://doi.org/10.1080/21645698.2015.1106063
 
Mikić A., Rubiales D., Smýkal P., Stoddard F.L. (2011): The legume manifesto: (Net)workers on Fabaceae, unite! Field and and Vegetable Crops Research, 48: 253–258. https://doi.org/10.5937/ratpov1101253M
 
Mikschofsky H., Schirrmeier H., Keil G.M., Lange B., Polowick P.L., Keller W., Broer I. (2009): Pea-derived vaccines demonstrate high immunogenicity and protection in rabbits against rabbit haemorrhagic disease virus. Plant Biotechnology Journal, 6: 537–49.  https://doi.org/10.1111/j.1467-7652.2009.00422.x
 
Molinier J., Himber C., Hahne G. (2000): Use of green fluorescent protein for detection of transformed shoots and homozygous offspring. Plant Cell Reports, 19: 219–223. https://doi.org/10.1007/s002990050002
 
Molnar Z. (2008): Genetic transformation of pea by microprojectile bombardment. In: Kirti P.B. (ed.): Handbook of New Technologies for Genetic Improvement of Legumes. Boca Raton, CRC Press.
 
Morton R.L., Gollasch S., Schroeder H.E., Bateman K.S., Higgins T.J. (2002): Genetic technology in peas for improved field performance and enhanced grain quality. In: Khachatourians G.C., Scorza R., Nip W.K., Hui Y.H. (eds.): Transgenic Plants and Crops. 1st Ed., New York, CRC Press.
 
Morton R.L., Schroeder H.E., Bateman K.S., Chrispeels M.J., Armstrong E., Higgins T.J. (2000): Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proceedings of National Academy of Sciences USA, 97: 3820–3825.  https://doi.org/10.1073/pnas.070054597
 
Muehlbauer F.J., Short R.W., Kraft J.M. (1983): Description and Culture of Dry Peas. USDA-ARS Agricultural Reviews and Manuals, Western Series No. 37. Western Region, Oakland: 92.
 
Nadolska-Orczyk A. (2008): Agrobacterium-mediated transformation of pea (Pisum sativum L.). In: Kirti P.B. (ed.): Handbook of New Technologies for Genetic Improvement of Legumes. London, Boca Raton: 187–202.
 
Nadolska-Orczyk A., Orczyk W. (2000): Study of the factors influencing Agrobacterium mediated transformation of pea (Pisum sativum L.). Molecular Breeding, 6: 185–194. https://doi.org/10.1023/A:1009679908948
 
Nauerby B., Madsen M., Christiansen J., Wyndaele R. (1991): A rapid and efficient regeneration system for pea (Pisum sativum), suitable for transformation. Plant Cell Reports, 9: 676–679.  https://doi.org/10.1007/BF00235355
 
Negawo A.T. (2015): Transgenic Insect Resistance in Grain Legumes. [Ph.D. Thesis.] Hannover, Hannover University: 159.
 
Negawo A.T., Aftabi M., Jacobsen H.-J., Altosaar I., Hassan F.S. (2013): Insect resistant transgenic pea expressing cry1Ac gene product from Bacillus thuringiensis. Biological Control, 67: 293–300.  https://doi.org/10.1016/j.biocontrol.2013.09.016
 
Negawo A.T., Baranek L., Jacobsen H.-J., Hassan F. (2016): Molecular and functional characterization of cry1Ac transgenic pea lines. GM Crops and Food, 7: 159–174. https://doi.org/10.1080/21645698.2016.1240148
 
Nifantova S.N., Simonenko I.U.V., Komarnitskii I.K., Kuchuk N.V. (2005): Production of transgenic pea (Pisum sativum L.) plants resistant to herbicide pusuit. Tsitilogiia Genetika, 39: 16–21.
 
Ning W., Zhai H., Yu J., Liang S., Yang X., Xing X., Huo J., Pang T., Yang Y., Bai X. (2017): Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean. Molecular Breeding, 37: 19. https://doi.org/10.1007/s11032-016-0614-4
 
Olhoft P.O., Somers D.S. (2001): L-cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Reports, 20: 706–711. https://doi.org/10.1007/s002990100379
 
Oliveira H.A. de (1963): Occurence of allogamy in pea. Revista de Olericultura, 3: 83–90. (in Portuguese)
 
Özcan S. (1995): Transient expression of GUS gene delivered into immature cotyledons of pea by microprojectile bombardment. Turkish Journal of Botany, 19: 423–426.
 
Padgette S.R., Kolacz K.H., Delannay X., Re D.B., LaVallee B.J., Tinius C.N., Rhodes W.K., Otero Y.I., Barry G.F., Eichholtz D.A., Peschke V.M., Nida D.L., Taylor N.B., Kishore G.M. (1995): Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Science, 35: 1451–1461. https://doi.org/10.2135/cropsci1995.0011183X003500050032x
 
Paes de Melo B., Lourenço-Tessutti I.T., Morgante C.V., Santos N.C., Pinheiro L.B., de Jesus Lins C.B., Silva M., Macedo L., Fontes E., Grossi-de-Sa M.F. (2020): Soybean embryonic axis transformation: Combining biolistic and Agrobacterium-mediated protocols to overcome typical complications of in vitro plant regeneration. Frontiers in Plant Science, 11: 1228.  https://doi.org/10.3389/fpls.2020.01228
 
Paszkowski J., Whitham S.A. (2001): Gene silencing and DNA methylation processes. Current Opinion in Plant Biology, 4: 123–129. https://doi.org/10.1016/S1369-5266(00)00147-3
 
Paz M., Shou H., Guo Z., Zhang Z., Banerjee A.K., Wang K. (2004): Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica, 136: 167–179. https://doi.org/10.1023/B:EUPH.0000030670.36730.a4
 
Perrin Y., Vaquero C., Gerrard I., Sack M., Drossard J., Stöger E., Christou P., Fischer R. (2000): Transgenic pea seeds as bioreactors for the production of a single-chain Fv fragment (scFV) antibody used in cancer diagnosis and therapy. Molecular Breeding, 6: 345–352.  https://doi.org/10.1023/A:1009657701588
 
Pniewski T., Kapusta J. (2005): Efficiency of transformation of Polish cultivars of pea (Pisum sativum L.) with various regeneration capacity by using hypervirulent Agrobacterium tumefaciens strains. Journal of Applied Genetics, 46: 139–147.
 
Polowick P.L., Quandt J., Mahon J.D. (2000): The ability of pea transformation technology to transfer genes into peas adapted to western Canadian growing conditions. Plant Science, 153: 161–170.  https://doi.org/10.1016/S0168-9452(99)00267-8
 
Polowick P.L., Vandenberg A., Mahon J.D. (2002): Field assessment of outcrossing from transgenic pea (Pisum sativum L.) plants. Transgenic Research, 11: 515–519. https://doi.org/10.1023/A:1020368322335
 
Ponappa T., Brzozowski A., Finer J. (1999): Transient expression and stable transformation of soybean using the jellyfish green fluorescent protein. Plant Cell Reports, 19: 6–12. https://doi.org/10.1007/s002990050702
 
Preiszner J., Van Toai T.T., Huynh L., Bolla R.I., Yen H.H. (2001): Structure and activity of a soybean Adh promoter in transgenic hairy roots. Plant Cell Reports, 20: 763–769. https://doi.org/10.1007/s002990100385
 
Prescott V.E., Campbell P.M., Moore A., Mattes J., Rothenberg M.E., Foster P.S., Higgins T.J.V., Hogan S.P. (2005): Transgenic expression of bean alpha amylase inhibitor in pea results in altered structure and immunogenicity. Journal of Agricultural and Food Chemistry, 16: 9023–9030. https://doi.org/10.1021/jf050594v
 
Prescott V.E., Forbes E., Foster P.S., Matthaei K., Hogan S.P. (2006): Mechanistic analysis of experimental food allergen-induced cutaneous reactions. Journal of Leukocyte Biology, 80: 258–266.  https://doi.org/10.1189/jlb.1105637
 
Puonti-Kaerlas J., Eriksson T., Engstrom P. (1990): Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium tumefaciens-mediated gene transfer. Theoretical and Applied Genetics, 80: 246–252.  https://doi.org/10.1007/BF00224394
 
Puonti-Kaerlas J., Eriksson T., Engstrom P. (1992): Inheritance of a bacterial hygromycin phosphotransferase gene in the progeny of primary transgenic pea plants. Theoretical and Applied Genetics, 84: 443–450. https://doi.org/10.1007/BF00229505
 
Purnhagen K., Wesseler J. (2021): EU regulation of new plant breeding technologies and their possible economic implications for the EU and beyond. Applied Economic Perspectives and Policy, 43: 1621–1637. https://doi.org/10.1002/aepp.13084
 
Pusztai A., Bardocz G.G., Alonso R., Chrispeels M.J., Schroeder H.E., Tabe L.M., Higgins T.J. (1999): Expression of the insecticidal bean alpha-amylase inhibitor transgene has minimal detrimental effect on the nutritional value of peas fed to rats at 30% of the diet. The Journal of Nutrition, 129: 1597–603. https://doi.org/10.1093/jn/129.8.1597
 
Rakouský S., Ondřej M., Sehnal F., Habuštová O. Hussein H.M., Ovesná J., Kučera L., Kocourek F., Říha K., Dostálová R., Seidenglanz M., Tejklová E., Griga M. (2004): Transgenic plant products and their introduction into the environment and crop protection systems, a risk assessment. In: Nap J.-P., Atanassov A., Stiekema W.J. (eds.): Genomics for Biosafety in Plant Biotechnology. Amsterdam, IOS Press: 173–184.
 
Redden B., Leonforte T., Ford R., Croser J., Slattery J. (2005): Pea (Pisum sativum L.). In: Singh R.J., Jahuar P.P. (eds.): Genetic Resources, Chromosome Engineering, and Crop Improvement. Florida, CRC Press: 49–83.
 
Reddy M.S., Dinkins R.D., Collins G.B. (2003): Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Reports, 21: 676–683.  https://doi.org/10.1007/s00299-002-0567-4
 
Richter A., Jacobsen H.J., de Kathen A., de Lorenzo G., Briviba K., Hain R., Kiesecker H. (2006): Transgenic peas (Pisum sativum) expressing polygalcturonase inhibiting protein from raspberry and stilbene synthase from grapevine (Vitis vinifera). Plant Cell Reports, 25: 1166–1173. https://doi.org/10.1007/s00299-006-0172-z
 
Rolletschek H., Hosein F., Miranda M., Heim U., Götz K.P., Schlereth A., Borisjuk L., Saalbach I., Wobus U., Weber H. (2005): Ectopic expression of an amino acid transporter (VfAAP1) in seeds of Vicia narbonensis and pea increases storage proteins. Plant Physiology, 137: 1236–1249.  https://doi.org/10.1104/pp.104.056523
 
Rouet P., Smih F., Jasin M. (1994): Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Molecular and Cellular Biology, 14: 8096–8106.
 
Rubluo A., Kartha K.K., Mroginski L.A., Dyck J. (1984): Plant regeneration from pea leaflets cultured in vitro and genetic stability of regenerants. Journal of Plant Physiology, 117: 119–130. https://doi.org/10.1016/S0176-1617(84)80024-3
 
Saalbach I., Giersberg M., Conrad U.D.O. (2001): High-level expression of a single-chain Fv fragment (scFv) antibody in transgenic pea seeds. Journal of Plant Physiology, 158: 529–533.  https://doi.org/10.1078/0176-1617-00366
 
Šafářová D., Navrátil M., Petrusová J., Pokorný R., Piáková Z. (2008): Genetic and biological diversity of the Pea Seed-borne Mosaic Virus isolates occuring in Czech Republic. Acta Virologica, 52: 53–57.
 
Salehi A., Mohammadi M., Okhovvat S.M., Omidi M. (2005): Chitinase gene transformation through Agrobacterium and its explanation in soybean in order to induce resistance to root rot caused by Rhizoctonia solani. Communications in Agricultural and Applied Biological Sciences, 70: 399–406.
 
Schaefer H., Hechenleitner P., Santos-Guerra A., Sequeira M., Pennington R., Kenicer G., Carine M. (2012): Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages. BMC Evolutionary Biology, 12: 250.  https://doi.org/10.1186/1471-2148-12-250
 
Schaerer S., Pilet P.-E. (1991): Roots, explants and protoplasts from pea transformed with strains of Agrobacterium tumefaciens and rhizogenes. Plant Science, 78: 247–258. https://doi.org/10.1016/0168-9452(91)90205-M
 
Schiemann J., Eisenreich G. (1989): Transformation of field bean Vicia faba L. cells expression of a chimeric gene in cultured hairy roots and root-derived callus. Biochemie und Physiologie der Pflanzen, 185: 135–140. https://doi.org/10.1016/S0015-3796(89)80170-2
 
Schroeder H.E., Schotz A.H., Wardley-Richardson T., Spencer D., Higgins T. (1993): Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiology, 101: 751–757.  https://doi.org/10.1104/pp.101.3.751
 
Shroeder H.E., Gollasch S., Table L.M., Higgins T.J.V. (1994): Recent advances in gene transfer to peas. Pisum Genetics, 26: 1–5.
 
Schroeder H.E., Gollasch S., Moore A., Tabe L.M., Craig S., Hardie D.C., Chrispeels M.J., Spencer D., Higgins T.J.V. (1995): Bean [alpha]-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiology, 107: 1233–1239. https://doi.org/10.1104/pp.107.4.1233
 
Schumacher H., Paulsen H.M., Gau A.E., Link W., Jürgens H.U., Sass O., Dieterich R. (2011): Seed protein amino acid composition of important local grain legumes Lupinus angustifolius L., L. luteus L., Pisum sativum L. and Vicia faba L. Plant Breeding, 130: 156–164. https://doi.org/10.1111/j.1439-0523.2010.01832.x
 
Schwarzbach E., Smýkal P., Dostál O., Jarkovská M., Valová S. (2014): Gregor J. Mendel – Genetics founding father. Czech Journal of Genetics and Plant Breeding, 50: 43–51. https://doi.org/10.17221/54/2014-CJGPB
 
Shade R.E., Schroeder H.E., Pueyo J.J., Tabe L.M., Murdock L.L., Higgins T.J.V., Chrispeels M.J. (1994): Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles. Bio/Technology, 12: 793–795.
 
Sharma R.P., Sharma R.K., Munshi A.D. (1998): Breeding for Fusarium wilt resistance in pea (Pisum sativum L.). Annual Plant Protection Science, 6: 1–10.
 
Singh R., Sharma S., Kharb P., Saifi S., Tuteja N. (2020): OsRuvB transgene induces salt tolerance in pigeon pea. Journal of Plant Interactions, 15: 17–26.  https://doi.org/10.1080/17429145.2020.1722267
 
Simmonds D.H., Donaldson P.A. (2000): Genotype screening for proliferative embryogenesis and biolistic transformation of short-season soybean genotypes. Plant Cell Reports, 19: 485–490.  https://doi.org/10.1007/s002990050760
 
Smartt J. (1990): Contents. In: Grain Legumes: Evolution and Genetic Resources. Cambridge, Cambridge University Press: V–Vi.
 
Smýkal P., Kenicer G., Flavell A., Corander J., Kosterin O., Redden R., Ellis N. (2011): Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genetic Resources, 9: 4–18.  https://doi.org/10.1017/S147926211000033X
 
Snoad B. (1985): The need for improved pea-crop ideotypes. In: Hebblethwaite P.D., Heath M.C., Dawkins T.C.K. (eds.): The Pea Crop. London, Butterworhts: 31–44.
 
Solleti S.K., Bakshi S., Purkayastha J., Panda S.K., Sahoo L. (2008): Transgenic cowpea (Vigna unguiculata) seeds expressing a bean alpha-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Reports, 27: 1841–1850.  https://doi.org/10.1007/s00299-008-0606-x
 
Somers D., Samac D., Olhoft P. (2003): Recent advances in legume transformation. Plant Physiology, 131: 892–899.  https://doi.org/10.1104/pp.102.017681
 
Soto N., Delgado C., Hernández Y., Rosabal Y., Ferreira A., Pujol M., Aragão F.J.L., Enríquez G.A. (2017): Efficient particle bombardment-mediated transformation of Cuban soybean (INCASoy-36) using glyphosate as a selective agent. Plant Cell, Tissue and Organ Culture, 128: 187–196. https://doi.org/10.1007/s11240-016-1099-x
 
Steeves R.M., Todd T.C., Essig J.S., Trick H.N. (2006): Transgenic soybean expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Functional Plant Biology, 33: 991–999.  https://doi.org/10.1071/FP06130
 
Sun X., Hu Z., Chen R., Jiang Q., Song G., Zhang H., Xi Y. (2015): Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Scientific Reports, 5: 1–10. https://doi.org/10.1038/srep10342
 
Švábová L. (2008): Metodika agrobakteriální genetické transformace hrachu (Pisum sativum L.). Šumperk, Agritec Plant Research. (in Czech)
 
Švábová L., Lebeda A. (2005): In vitro selection for improved plant resistance to toxin-producing pathogens. Journal of Phytopathology, 153: 52–64.  https://doi.org/10.1111/j.1439-0434.2004.00928.x
 
Švábová L., Griga M. (2008): The effect of cocultivation treatments on transformation efficiency in pea (Pisum sativum L.). Plant Cell, Tissue and Organ Culture, 95: 293–304.  https://doi.org/10.1007/s11240-008-9443-4
 
Švábová L., Smýkal P., Griga M., Ondřej V. (2005): Agrobacterium-mediated transformation of Pisum sativum in vitro and in vivo. Biologia Plantarum, 49: 361–370. https://doi.org/10.1007/s10535-005-0009-6
 
Švábová L., Griga M., Horáček J., Smýkal P., Hanáček P., Reinöhl V., Navrátil M., Šafářová D., Poláková M. (2007a): Development of transgenic pea lines with improved tolerance to Pea Enation Mosaic Virus and Pea Seed-borne Mosaic Virus. In: Book of Abstracts of 6th Europ. Conf. Grain Legumes „Integrated Legume Biology for Sustainable Agriculture“, Lisbon: 53–54.
 
Švábová L., Hanáček P., Horáček J., Reinöhl V., Griga M. (2007b): Transformation of pea to induce resistance to insect pests and fungal pathogens – first partial results. In: Workshop “Functional Genomics and Proteomics in Plant Breeding”, Brno, MZLU: 24–30.
 
Švábová L., Smýkal P., Griga M. (2008): Agrobacterium-mediated transformation of pea (Pisum sativum L.): Transformant production in vitro and by non-tissue culture approach. In: Kharkwal M.C. (ed.): Proc. 4th Int. Food Legumes Research Conference (IFLRC-IV). New Delhi, Oct 18–22, 2005.
 
Švábová L., Griga M., Navrátil M., Šafařová D., Hanáček P., Reinöhl V., Horáček J., Smýkal P. (2009): Transgenic pea (Pisum sativum L.) lines with improved tolerance to Pea Enation Mosaic Virus and Pea Seed-borne Mosaic Virus. In: Sehnal F., Drobník J. (eds.): White Book of Genetically Modified Crops. EU Regulations and Research Experience from the Czech Republic. České Budějovice, Biology Centre AS CR: 32.
 
Švábová L., Atif R.M., Horáček J., Sehnal F., Jacas L., Hanáček P., Ochatt S., Seidenglanz M., Griga M. (2010): Genetic transformation of pea for improved tolerance/resistance to fungal pathogens and insect pests. In: Proc. 5th Int. Food Legumes Conference (IFLRC V) and 7th Europ. Conf. Grain Legumes (AEP VII), Antalya.
 
Świecicki W. (2019): The Cataloque of Pisum Genes. Poznań, Agencja Rekl. Kraetiff.
 
Szymkiewicz A., Jedrychowski L. (2006): Determination of pea proteins allergenicity with the use Balb/c mouse. Central European Journal of Immunology, 31: 63–69.
 
Thu T.T., Dewaele E., Trung L.Q., Claeys M., Jacobs M., Angenon G. (2007): Increasing lysine levels in pigeonpea (Cajanus cajan (L.) Millsp) seeds through genetic engineering. Plant Cell, Tissue and Organ Culture, 91: 135–143. https://doi.org/10.1007/s11240-007-9227-2
 
Timmerman-Vaughan G., Pither-Joyce M., Cooper P., Russell A., Goulden D., Butler R., Grant J. (2001): Partial resistance of transgenic peas to Alfalfa Mosaic Virus under greenhouse and field conditions. Crop Science, 41: 846–853. https://doi.org/10.2135/cropsci2001.413846x
 
Tiwari K.R., Penner G.A., Waekentin T.D., Rashid K.Y. (1997): Pathogenic variation in Erysiphe pisi, the causal organism of powdery mildew of pea. Canadian Journal of Plant Pathology, 19: 267–271. https://doi.org/10.1080/07060669709500522
 
Tzfira T., Citovsky V. (2006): Agrobacterium-mediated genetic transformation of plants: Biology and biotechnology. Current Opinion in Biotechnology, 17: 147–154. https://doi.org/10.1016/j.copbio.2006.01.009
 
Valentine M., Tar J., Mookkan M., Firman J., Zhang Z. (2017): Silencing of soybean raffinose synthase gene reduced raffinose family oligosaccharides and increased true metabolizable energy of poultry feed. Frontiers in Plant Science, 8: 692.  https://doi.org/10.3389/fpls.2017.00692
 
van Emden H.F., Ball S.L., Rao M.R. (1988): Pest, disease and weed problems in pea, lentil, faba bean and chickpea. In: Summerfield R.J. (eds.): World Crops: Cool Season Food Legumes. Current Plant Science and Biotechnology in Agriculture. Vol. 5, Dordrecht, Springer: 519–534.
 
Wang T.L., Hedley C.L. (1991): Seed development in peas: Knowing your three ‚r’s‘ (or four, or five). Seed Science Research, 1: 3–14. https://doi.org/10.1017/S096025850000057X
 
Wang T.L., Hedley C.L. (1993): Genetics and developmental analysis of the seed. In: Casey R., Davies D.R. (eds.): Peas, Genetics, Molecular Biology and Biotechnology. Wallingford, CAB International: 83–120.
 
Wang X., Eggenberger A.L., Nutter F.W. Jr., Hill J.H. (2001): Pathogen-derived transgenic resistance to soybean mosaic virus in soybean. Molecular Breeding, 8: 119–127. https://doi.org/10.1023/A:1013358200107
 
Wang X., Lv S., Liu T., Wei J., Qu S., Lu Y., Zhang J., Oo S., Zhang B., Pan X., Liu H. (2020): CRISPR/Cas9 genome editing shows the important role of AZC_2928 gene in nitrogen-fixing bacteria of plants. Functional and Integrative Genomics, 20: 657–668. https://doi.org/10.1007/s10142-020-00739-8
 
Warkentin T.D., Jordan M.C., Hobbs S.L.A. (1992): Effect of promoter-leader sequences on transient reporter gene expression in particle bombarded pea (Pisum sativum L.) tissues. Plant Science, 87: 171–177.  https://doi.org/10.1016/0168-9452(92)90148-F
 
Welham T., Domoney C. (2000): Temporal and spatial activity of a promoter from a pea enzyme inhibitor gene and its exploitation for seed quality improvement. Plant Science, 159: 289–299.  https://doi.org/10.1016/S0168-9452(00)00358-7
 
Wen F., Zhu Y., Hawes M.C. (1999): Effect of pectin methylesterase gene expression on pea root development. Plant Cell, 11: 1129–1140. https://doi.org/10.1105/tpc.11.6.1129
 
Wolabu T.W., Park J.J., Chen M., Cong L., Ge Y., Jiang Q., Debnath S., Li G., Wen J., Wang Z. (2020): Improving the genome editing effi-ciency of CRISPR/Cas9 in Arabidopsis and Medicago truncatula. Planta, 252: 15. https://doi.org/10.1007/s00425-020-03415-0
 
Zhang F., Cong L., Lodato S., Kosuri S., Church G.M., Arlotta P. (2011): Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature Biotechnology, 29: 149–153. https://doi.org/10.1038/nbt.1775
 
Zhu B.G., Ye C.J., Lu H.Y., Chen X.J., Chai G.H., Chen J.N., Wang C. (2006): Identification and characterization of a novel heat shock transcription factor gene, GmHsfA1 in soybeans (Glycine max). Journal of Plant Research, 119: 247–256. https://doi.org/10.1007/s10265-006-0267-1
 
Zimmermann J., Saalbach I., Jahn D., Giersberg M., Haehnel S., Wedel J., Macek J., Zoufal K., Glünder G., Falkenburg D., Kiprijanov S. (2009): Antibody expressing pea seeds as fodder for prevention of gastrointestinal parasitic infections in chickens. BMC Biotechnology, 9: 79.  https://doi.org/10.1186/1472-6750-9-79
 
Zohary D., Hopf M. (2000): Domestication of Plants in the Old World. 3rd Ed., Oxford, University Press.
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti