Rabies virus glycoprotein produced in Nicotiana benthamiana is an immunogenic antigen in mice

https://doi.org/10.17221/25/2020-CJGPBCitation:

Park Y., Kang H., Min K., Kim N.H., Park M., Ouh I.-O., Kim H.-H., Song J.-Y., Yang D.-K., Sohn E.-J., Lee S. (2021): Rabies virus glycoprotein produced in Nicotiana benthamiana is an immunogenic antigen in mice. Czech J. Genet. Plant Breed., 57: 26−35.

download PDF

Rabies remains an infectious disease among humans and animals, and requires the development of an effective vaccine essential to prevent rabies. Advances in molecular biology and biotechnology have led to the development and improvement of many rabies vaccines. Before the third-generation of the vaccine, rabies vaccines were based on the virus itself. Thus, even if effective, these vaccines may not be completely safe, resulting in a strong demand for the development of effective subunit vaccines that do not raise concerns about virus replication and infection in the host. This study investigated the ability of the glycoprotein of the rabies virus to be expressed in tobacco plants (Nicotiana benthamiana) and to induce an immune response in mice. Using a transient transfection, a soluble glycoprotein was successfully expressed in N. benthamiana. Fusing of five histidine residues at the C-terminus enabled the glycoprotein to be easily purified by affinity chromatography. The glycoprotein expressed in the plants was found to be N-glycosylated post-translationally, and the mice immunised with this glycoprotein generated neutralising antibodies against the rabies virus. These results suggest that a glycoprotein produced in the endoplasmic reticulum of N. benthamiana is bioactive, and might be used to generate a subunit vaccine against the rabies virus.

References:
Ashraf S., Singh P.K., Yadav D.K., Shahnawaz M., Mishra S., Sawant S.V., Tuli R.(2005): High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. Journal of Biotechnology, 119: 1–14.
 
Celis E., Ou D., Dietzschold B., Koprowski H. (1988): Recognition of rabies and rabies-related viruses by T cells derived from human vaccine recipients. Journal of Virology, 62: 3128–3134. https://doi.org/10.1128/JVI.62.9.3128-3134.1988
 
Conzelmann K.K., Cox J.H., Schneider L.G., Thiel H.J. (1990): Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology, 175: 485–499.
 
Coslett G.D., Holloway B.P., Obijeski J.F. (1980): The structural proteins of rabies virus and evidence for their synthesis from separate monocistronic RNA species. Journal of General Virology, 49: 161–180.
 
Cox J.H., Dietzschold B., Schneider L.G. (1977): Rabies virus glycoprotein. II. Biological and serological characterization. Infection and Immunity, 16: 754–759. https://doi.org/10.1128/IAI.16.3.754-759.1977
 
Culbertson C.G., Peck F.B., Jr., Powell H.M. (1956): Duck-embryo rabies vaccine; study of fixed virus vaccine grown in embryonated duck eggs and killed with beta-propiolactone (BPL). The Journal of the American Medical Association, 162: 1373–1376. https://doi.org/10.1001/jama.1956.02970320021006
 
Dhankhar P., Vaidya S.A., Fishbien D.B., Meltzer M.I. (2008): Cost effectiveness of rabies post exposure prophylaxis in the United States. Vaccine, 26: 4251–4255. https://doi.org/10.1016/j.vaccine.2008.05.048
 
Foley H.D., McGettigan J.P., Siler C.A., Dietzschold B., Schnell M.J. (2000): A recombinant rabies virus expressing vesicular stomatitis virus glycoprotein fails to protect against rabies virus infection. Proceedings of the National Academy of Sciences of the United States of America, 97: 14680–14685. https://doi.org/10.1073/pnas.011510698
 
Freuling C., Selhorst T., Batza H.J., Muller T. (2008): The financial challenge of keeping a large region rabies-free – the EU example. Developments in Biologicals, 131: 273–282.
 
Hampson K., Coudeville L., Lembo T., Sambo M., Kieffer A., Attlan M., Barrat J., Blanton J. D., Briggs D.J., Cleaveland S., Costa P., Freuling C.M., Hiby E., Knopf L., Leanes F., Meslin F.X., Metlin A., Miranda M.E., Muller T., Nel L.H., Recuenco S., Rupprecht C.E., Schumacher C., Taylor L., Antonio M., Vigilato N., Zinsstag J., Dushoff J. (2015): Correction: Estimating the global burden of endemic canine rabies. PLOS Neglected Tropical Diseases, 9: e0003786. https://doi.org/10.1371/journal.pntd.0003786
 
Hoekema A., Hirsch P.R., Hooykaas P.J.J., Schilperoort R.A. (1983): A binary plant vector strategy based on separation of Vir-region and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature, 303: 179–180. https://doi.org/10.1038/303179a0
 
Kieny M.P., Lathe R., Drillien R., Spehner D., Skory S., Schmitt D., Wiktor T., Koprowski H., Lecocq J.P. (1984): Expression of rabies virus glycoprotein from a recombinant vaccinia virus. Nature, 312: 163–166. https://doi.org/10.1038/312163a0
 
Koncz C., Schell J. (1986): The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Molecular Genetics and Genomics, 204: 383–396. https://doi.org/10.1007/BF00331014
 
Kopertekh L., Schiemann J. (2019): Transient production of recombinant pharmaceutical proteins in plants: Evolution and perspectives. Current Medicinal Chemistry, 26: 365–380.
 
Lakshmi P.S., Verma D., Yang X., Lloyd B., Daniell H. (2013): Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS One, 8: e54708. https://doi.org/10.1371/journal.pone.0054708
 
Lathe R.F., Kieny M.P., Schmitt D., Curtis P., Lecocq J.P. (1984): M13 bacteriophage vectors for the expression of foreign proteins in Escherichia coli: the rabies glycoprotein. Journal of Molecular and Applied Genetics, 2: 331–342.
 
Loza-Rubio E., Rojas E., Gomez L., Olivera M.T., Gomez-Lim M.A. (2008): Development of an edible rabies vaccine in maize using the Vnukovo strain. Developments in Biologicals, 131: 477–482.
 
Loza-Rubio E., Rojas-Anaya E., Lopez J., Olivera-Flores M.T., Gomez-Lim M., Tapia-Perez G. (2012): Induction of a protective immune response to rabies virus in sheep after oral immunization with transgenic maize, expressing the rabies virus glycoprotein. Vaccine, 30: 5551–5556. https://doi.org/10.1016/j.vaccine.2012.06.039
 
Maas R.A., de Winter M.P., Venema S., Oei H.L., Claassen I.J. (2000): Antigen quantification as in vitro alternative for potency testing of inactivated viral poultry vaccines. Veterinary Quarterly, 22: 223–227. https://doi.org/10.1080/01652176.2000.9695063
 
Macfarlan R.I., Dietzschold B., Koprowski H. (1986): Stimulation of cytotoxic T-lymphocyte responses by rabies virus glycoprotein and identification of an immunodominant domain. Molecular Immunology, 23: 733–741. https://doi.org/10.1016/0161-5890(86)90084-2
 
Mason H.S., Haq T.A., Clements J.D., Arntzen C.J. (1998): Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine, 16: 1336–1343. https://doi.org/10.1016/S0264-410X(98)80020-0
 
McGarvey P.B., Hammond J., Dienelt M.M., Hooper D.C., Fu Z.F., Dietzschold B., et al. (1995): Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology (NY), 13: 1484–1487. https://doi.org/10.1038/nbt1295-1484
 
Merlin M., Pezzotti M., Avesani L. (2017): Edible plants for oral delivery of biopharmaceuticals. British Journal of Clinical Pharmacology, 83: 71–81.  https://doi.org/10.1111/bcp.12949
 
Meslin F.X., Fishbein D.B., Matter H.C. (1994): Rationale and prospects for rabies elimination in developing countries. Current Topics in Microbiology and Immunology, 187: 1–26.
 
Morgeaux S., Poirier B., Ragan C.I., Wilkinson D., Arabin U., Guinet-Morlot F., Levis R., Meyer H., Riou P., Shaid S., Volokhov D., Tordo N., Chapsal J.M. (2017): Replacement of in vivo human rabies vaccine potency testing by in vitro glycoprotein quantification using ELISA – Results of an international collaborative study. Vaccine, 35: 966–971. https://doi.org/10.1016/j.vaccine.2016.12.039
 
Munro S., Pelham H.R. (1987): A C-terminal signal prevents secretion of luminal ER proteins. Cell, 48: 899–907. https://doi.org/10.1016/0092-8674(87)90086-9
 
Nagarajan T., Reddy G.S., Mohana Subramanian B., Rajalakshmi S., Thiagarajan D., Tordo N., Jallet C., Srinivasan V.A. (2006): A simple immuno-capture ELISA to estimate rabies viral glycoprotein antigen in vaccine manufacture. Biologicals, 34: 21–27. https://doi.org/10.1016/j.biologicals.2005.07.004
 
Napier J.A., Richard G., Shewry P.R. (1998): Trafficking and stability of heterologous proteins in transgenic plants. Methods in Biotechnology, 3: 189–202.
 
Oliveira R.P., Santiago A.F., Ficker S.M., Gomes-Santos A.C., Faria A.M.C. (2015): Antigen administration by continuous feeding enhances oral tolerance and leads to long-lasting effects. Journal of Immunological Methods, 421: 36–43. https://doi.org/10.1016/j.jim.2015.02.005
 
Park Y., An D.J., Choe S., Lee Y., Park M., Park S., Gu S., Min K., Kim N.H., Lee S., Kim J.K., Kim H.Y., Sohn E.J., Hwang I. (2019): Development of recombinant protein-based vaccine against classical swine fever virus in pigs using transgenic Nicotiana benthamiana. Frontiers in Plant Science, 10: 624. https://doi.org/10.3389/fpls.2019.00624
 
Pasteur L. (1885): Méthode pour prévenir la rage après morsure. Comptes rendus de l’Académie des Sciences, 17: 765–774.
 
Pniewski T., Milczarek M., Wojas-Turek J., Pajtasz-Pia-secka E., Wietrzyk J., Czyz M. (2018): Plant lyophilisate carrying S-HBsAg as an oral booster vaccine against HBV. Vaccine, 36: 6070–6076.
 
Rojas-Anaya E., Loza-Rubio E., Olivera-Flores M.T., Gomez-Lim M. (2009): Expression of rabies virus G protein in carrots (Daucus carota). Transgenic Research, 18: 911–919. https://doi.org/10.1007/s11248-009-9278-8
 
Rupprecht C.E., Smith J.S. (1994): Raccoon rabies: the re-emergence of an epizootic in a densely populated area. Seminars in Virology, 5: 155. https://doi.org/10.1006/smvy.1994.1016
 
Rupprecht C.E., Nagarajan T., Ertl H. (2016): Current status and development of vaccines and other biologics for human rabies prevention. Expert Review of Vaccines, 15: 731–749. https://doi.org/10.1586/14760584.2016.1140040
 
Shah K.H., Almaghrabi B., Bohlmann H. (2013): Comparison of expression vectors for transient expression of recombinant proteins in plants. Plant Molecular Biology Reporter, 31: 1529–1538. https://doi.org/10.1007/s11105-013-0614-z
 
Starodubova E.S., Preobrazhenskaia O.V., Kuzmenko Y.V., Latanova A.A., Yarygina E.I., Karpov V.L. (2015): Rabies vaccines: Current status and prospects for development. Molekuliarnaia biologiia, 49: 577–584. https://doi.org/10.1134/S0026893315040172
 
Stoger E., Vaquero C., Torres E., Sack M., Nicholson L., Drossard J., Williams S., Keen D., Perrin Y., Christou P., Fischer R. (2000): Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Molecular Biology, 42: 583–590. https://doi.org/10.1023/A:1006301519427
 
Streatfield S.J. (2005): Plant-based vaccines for animal health. Revue scientifique et technique, 24: 189–199.
 
Tollis M., Dietzschold B., Volia C.B., Koprowski H. (1991): Immunization of monkeys with rabies ribonucleoprotein (RNP) confers protective immunity against rabies. Vaccine, 9: 134–136. https://doi.org/10.1016/0264-410X(91)90270-G
 
Van Ree R., Cabanes-Macheteau M., Akkerdaas J., Milazzo J.P., Loutelier-Bourhis C., Rayon C., Villalba M., Koppelman S., Aalberse R., Rodriguez R., Faye L., Lerouge P. (2000): Beta(1,2)-xylose and alpha(1,3)-fucose residues have a strong contribution in IgE binding to plant glycoallergens. Journal of Biological Chemistry, 275: 11451–11458. https://doi.org/10.1074/jbc.275.15.11451
 
Vela Ramirez J.E., Sharpe L.A., Peppas N.A. (2017): Current state and challenges in developing oral vaccines. Advanced Drug Delivery Reviews, 114: 116–131. https://doi.org/10.1016/j.addr.2017.04.008
 
Wandelt C.I., Khan M.R., Craig S., Schroeder H.E., Spencer D., Higgins T.J. (1992): Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. The Plant Journal, 2: 181–192.
 
Wiktor T.J., Gyorgy E., Schlumberger D., Sokol F., Koprowski H. (1973): Antigenic properties of rabies virus components. Journal of Immunology, 110: 269–276.
 
WHO (2017): The Immunological Basis for Immunization Series: Module 17: Rabies Vaccines. Geneva, WHO.
 
Yelverton E., Norton S., Obijeski J.F., Goeddel D.V. (1983): Rabies virus glycoprotein analogs: biosynthesis in Escherichia coli. Science, 219: 614–620. https://doi.org/10.1126/science.6297004
 
Yousaf M.Z., Qasim M., Zia S., Khan M., Ashfaq U.A., Khan S. (2012): Rabies molecular virology, diagnosis, prevention and treatment. Virology Journal, 9: 50. https://doi.org/10.1186/1743-422X-9-50
 
Yusibov V., Hooper D.C., Spitsin S.V., Fleysh N., Kean R.B., Mikheeva T., Deka D., Karasev A., Cox S., Randall J., Koprowski H. (2002): Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine, 20: 3155–3164. https://doi.org/10.1016/S0264-410X(02)00260-8
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti