Genetic relationships among Cucurbita pepo ornamental gourds based on EST-SSR markers

https://doi.org/10.17221/27/2021-CJGPBCitation:

Wang W., Shi Y., Liu Y., Xiang Ch., Sun T., Zhang M., Shu Q., Qiu X., Bo K., Duan Y., Wang Ch. (2021): Genetic relationships among Cucurbita pepo ornamental gourds based on EST-SSR markers. Czech J. Genet. Plant Breed., 57: 125−139.

supplementary materialdownload PDF

The ornamental gourd Cucurbita pepo L. is a ubiquitous crop native to North America, exhibiting highly diverse fruit characteristics. Studying the genetic diversity of ornamental gourds can help identify and evaluate the curated germplasm resources, understand the phylogenetic relationships among them, and highlight ways in which the germplasm resources can be used to address gaps in the understanding. In this study, a set of 85 of 323 previously identified polymorphic expressed sequence tag-simple sequence repeat (EST-SSR) genetic markers were selected to evaluate the genetic relationships among 47 C. pepo accessions and one C. foetidissima accession. This collection consisted of accessions from the subspecies pepo, texana, and the hybrid texana × pepo. Our analyses yielded a total of 271 alleles, with an average of 3.2 alleles per genetic locus. The dendrogram construction, principal coordinate analyses, and genetic value calculation revealed several robust subclusters in the texana subspecies accessions. From these results, we propose five new distinct morphotypes based on our construction of a concise SSR fingerprint. Moreover, our study confirms that the fruit shape similarity among accessions is a fair reflection of genetic relatedness.

References:
Andres T.C. (1987): Cucurbita fraterna, the closest wild relative and progenitor of C. pepo. Cucurbit Genetics Cooperative Report, 10: 69–71.
 
Blanca J., Cañizares J., Roig C., Ziarsolo P., Nuez F., Picó B. (2011): Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics, 12: 104. https://doi.org/10.1186/1471-2164-12-104
 
Botstein D., White R.L., Skolnick M., Davis R.W. (1980): Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32: 314.
 
Castellanos-Morales G., Ruiz-Mondragón K.Y., Hernández-Rosales H.S., Sánchez-de la Vega G., Gámez N., Aguirre-Planter E., Montes-Hernández S., Lira-Saade R., Eguiarte, L.E. (2019): Tracing back the origin of pumpkins (Cucurbita pepo ssp. pepo L.) in Mexico. Proceedings of the Royal Society B, 286: 20191440. https://doi.org/10.1098/rspb.2019.1440
 
Chomicki G., Schaefer H., Renner S.S. (2020): Origin and domestication of Cucurbitaceae crops: insights from phylogenies, genomics and archaeology. New Phytologist, 226: 1240–1255. https://doi.org/10.1111/nph.16015
 
Decker D.S. (1988): Origin(s), evolution, and systematics of Cucurbita pepo (Cucurbitaceae). Economic Botany, 42: 4–15. https://doi.org/10.1007/BF02859022
 
Dice L.R. (1945): Measures of the amount of ecologic association between species. Ecology, 26: 297–302. https://doi.org/10.2307/1932409
 
Doyle J. (1991): DNA protocols for plants. In: Hewitt G.M., Johnston A.W.B., Young J.P.W. (eds.): Molecular Techniques in Taxonomy. 1st Ed. Berlin, Springer: 283–293.
 
Emerson R.A. (1910): The inheritance of sizes and shapes in plants. The American Naturalist, 44: 739–746. https://doi.org/10.1086/279188
 
Felsenstein J. (1985): Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
 
Ferriol M., Pico B., Nuez F. (2003): Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theoretical and Applied Genetics, 107: 271–282. https://doi.org/10.1007/s00122-003-1242-z
 
Garcia-Mas J., Benjak A., Sanseverino W., Bourgeois M., Mir G., González V.M., Hénaff E., Câmara F., Cozzuto L., Lowy E., Alioto T. (2012): The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences, 109: 11872–11877. https://doi.org/10.1073/pnas.1205415109
 
Gong L., Stift G., Kofler R., Pachner M., Lelley T. (2008): Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theoretical and Applied Genetics, 117: 37–48. https://doi.org/10.1007/s00122-008-0750-2
 
Gong L., Paris H.S., Nee M.H., Stift G., Pachner M., Vollmann J., Lelley T. (2012): Genetic relationships and evolution in Cucurbita pepo (pumpkin, squash, gourd) as revealed by simple sequence repeat polymorphisms. Theoretical and Applied Genetics, 124: 875–891. https://doi.org/10.1007/s00122-011-1752-z
 
Gong L., Paris H.S., Stift G., Pachner M., Vollmann J., Lelley T. (2013): Genetic relationships and evolution in Cucurbita as viewed with simple sequence repeat polymorphisms: the centrality of C. okeechobeensis. Genetic Resources and Crop Evolution, 60: 1531–1546. https://doi.org/10.1007/s10722-012-9940-5
 
Guo S., Zhang J., Sun H., Salse J., Lucas W.J., Zhang H., Zheng Y., Mao L., Ren Y., Wang Z., Min J. (2013): The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics, 45: 51–58. https://doi.org/10.1038/ng.2470
 
Huang S., Li R., Zhang Z., Li L., Gu X., Fan W., Lucas W.J., Wang X., Xie B., Ni P., Ren Y. (2009): The genome of the cucumber, Cucumis sativus L. Nature Genetics, 41: 1275–1281. https://doi.org/10.1038/ng.475
 
Katzir N., Tadmor Y., Tzuri G., Leshzeshen E., Mozes-Daube N., Danin-Poleg Y., Paris H.S. (2000): Further ISSR and preliminary SSR analysis of relationships among accessions of Cucurbita pepo. In: Katzir N., Paris H.S. (eds.): VII Eucarpia Meeting on Cucurbit Genetics and Breeding 510. 1st Ed. Ma’ale Ha Hamisha, ISHS: 433–440. https://doi.org/10.17660/ActaHortic.2000.510.69
 
Kaźmińska K., Sobieszekzmi K., Targońska-Karasek M., Korzeniewska A., Niemirowicz-Szczytt K., Bartoszewski G. (2017): Genetic diversity assessment of a winter squash and pumpkin (Cucurbita maxima Duchesne) germplasm collection based on genomic Cucurbita-conserved SSR markers. Scientia Horticulturae, 219: 37–44. https://doi.org/10.1016/j.scienta.2017.02.035
 
Kong Q., Chen J., Liu Y., Ma Y., Liu P., Wu S., Huang Y., Bie Z. (2014): Genetic diversity of Cucurbita rootstock germplasm as assessed using simple sequence repeat markers. Scientia Horticulturae, 175: 150–155. https://doi.org/10.1016/j.scienta.2014.06.009
 
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018): MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35: 1547–1549. https://doi.org/10.1093/molbev/msy096
 
Montero-Pau J., Blanca J., Bombarely A., Ziarsolo P., Esteras C., Martí-Gómez C., Ferriol M., Gómez P., Jamilena M., Mueller L., Picó B. (2018): De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnology Journal, 16: 1161–1171. https://doi.org/10.1111/pbi.12860
 
Nei M. (1978a): The theory of genetic distance and evolution of human races. Japanese Journal of Human Genetics, 23: 341–369. https://doi.org/10.1007/BF01908190
 
Nei M. (1978b): Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583–590. https://doi.org/10.1093/genetics/89.3.583
 
Nei M., Li W.H. (1979): Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 76: 5269–5273. https://doi.org/10.1073/pnas.76.10.5269
 
Ntuli N.R., Tongoona P.B., Zobolo A.M. (2015): Genetic diversity in Cucurbita pepo landraces revealed by RAPD and SSR markers. Scientia Horticulturae, 189: 192–200. https://doi.org/10.1016/j.scienta.2015.03.020
 
Pan Y., Wang Y., McGregor C., Liu S., Luan F., Gao M., Weng Y. (2020): Genetic architecture of fruit size and shape variation in cucurbits: A comparative perspective. Theoretical and Applied Genetics, 133: 1–21. https://doi.org/10.1007/s00122-019-03481-3
 
Paris H.S. (1986): A proposed subspecific classification for Cucurbita pepo. Phytologia, 61: 133–138.
 
Paris H.S. (2000): Paintings (1769–1774) by A.N. Duchesne and the history of Cucurbita pepo. Annals of Botany, 85: 815–830. https://doi.org/10.1006/anbo.2000.1147
 
Paris H.S. (2001): History of the cultivar-groups of Cucurbita pepo. Horticultural Reviews, 25: 71–170.
 
Paris H.S. (2016): Germplasm enhancement of Cucurbita pepo (pumpkin, squash, gourd: Cucurbitaceae): progress and challenges. Euphytica, 208: 415–438. https://doi.org/10.1007/s10681-015-1605-y
 
Paris H.S., Yonash N., Portnoy V., Mozes-Daube N., Tzuri G., Katzir N. (2003): Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers. Theoretical and Applied Genetics, 106: 971–978. https://doi.org/10.1007/s00122-002-1157-0
 
Paris H.S., Hanan A., Baumkoler F., Lebeda A. (2004): Assortment of five gene loci in Cucurbita pepo. In: Lebeda A., Paris H.S. (eds.): Proceedings of Cucurbitaceae. 1st Ed. Olomouc, Palacky University in Olomouc: 389–394.
 
Paris H.S., Lebeda A., Křistkova E., Andres T.C., Nee M.H. (2012): Parallel evolution under domestication and phenotypic differentiation of the cultivated subspecies of Cucurbita pepo (Cucurbitaceae). Economic Botany, 66: 71–90. https://doi.org/10.1007/s12231-012-9186-3
 
Qi J., Liu X., Shen D., Miao H., Xie B., Li X., Zeng P., Wang S., Shang Y., Gu X., Du Y. (2013): A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 45: 1510. https://doi.org/10.1038/ng.2801
 
Radwan S.A.A. (2014): Molecular discrimination and genetic relationships between some cultivars of Cucurbita pepo ssp. pepo using random amplification of polymorphic DNA (RAPD) analysis. African Journal of Biotechnology, 13: 1202–1209. https://doi.org/10.5897/AJB2012.3007
 
Robinson R.W., Decker-Walters D.S. (1997): Cucurbits. Wallingford, Cab International.
 
Rohlf F.J. (2000): NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.10e. New York, Exeter Publications.
 
Sanjur O.I., Piperno D.R., Andres T.C., Wessel-Beaver L. (2002): Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: Implications for crop plant evolution and areas of origin. Proceedings of the National Academy of Sciences, 99: 535–450. https://doi.org/10.1073/pnas.012577299
 
Singh N., Choudhury D.R., Singh A.K., Kumar S., Srinivasan K., Tyagi R.K., Singh N.K., Singh R. (2013): Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties. PLoS ONE, 8: e84136. https://doi.org/10.1371/journal.pone.0084136
 
Sinnott E.W. (1935): Evidence for the existence of genes controlling shape. Genetics, 20: 12–21. https://doi.org/10.1093/genetics/20.1.12
 
Sinnott E.W., Kaiser S. (1934): Two types of genetic control over the development of shape. Bulletin of the Torrey Botanical Club, 61: 1–7. https://doi.org/10.2307/2481029
 
Sneath P.H., Sokal R.R. (1973): Numerical Taxonomy. The Principles and Practice of Numerical Classification. San Francisco, W.H. Freeman and Company.
 
Stecher G., Tamura K., Kumar S. (2020): Molecular evolutionary genetics analysis (MEGA) for macOS. Molecular Biology and Evolution, 37: 1237–1239. https://doi.org/10.1093/molbev/msz312
 
Sun H., Wu S., Zhang G., Jiao C., Guo S., Ren Y., Zhang J., Zhang H., Gong G., Jia Z., Zhang F. (2017): Karyotype stability and unbiased fractionation in the paleo-allo-tetraploid Cucurbita genomes. Molecular Plant, 10: 1293–1306. https://doi.org/10.1016/j.molp.2017.09.003
 
Trumbull J.H. (1876): Vegetables cultivated by the American Indians. I. Bulletin of the Torrey Botanical Club, 613: 69–71. https://doi.org/10.2307/2476136
 
Varshney R.K., Chabane K., Hendre P.S., Aggarwal R.K., Graner A. (2007): Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Science, 173: 638–649. https://doi.org/10.1016/j.plantsci.2007.08.010
 
Wehner T.C., Naegele R.P., Myers J.R., Narinder P.S., Crosby K. (2020): Cucurbits. 2nd Ed. Wallingford, CABI: 20–21.
 
Whitaker T.W. (1947): American origin of the cultivated cucurbits. Annals of the Missouri Botanical Garden, 34: 101–111. https://doi.org/10.2307/2394459
 
Wilson H.D., Doebley J., Duvall M. (1992): Chloroplast DNA diversity among wild and cultivated members of Cucurbita (Cucurbitaceae). Theoretical and Applied Genetics, 84: 859–865. https://doi.org/10.1007/BF00227397
 
Xanthopoulou A., Ganopoulos I., Kalivas A., Nianiou-Obeidat I., Ralli P., Moysiadis T., Tsaftaris A., Madesis P. (2015): Comparative analysis of genetic diversity in Greek Genebank collection of summer squash ('Cucurbita pepo') landraces using start codon targeted (SCoT) polymorphism and ISSR markers. Australian Journal of Crop Science, 9: 14–21.
 
Xanthopoulou A., Montero-Pau J., Mellidou I., Kissoudis C., Blanca J., Picó B., Tsaballa A., Tsaliki E., Dalakouras A., Paris H.S., Ganopoulou M. (2019): Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits. Horticulture Research, 6: 1–7. https://doi.org/10.1038/s41438-019-0176-9
 
Xiang C., Duan Y., Li H., Ma W., Huang S., Sui X., Zhang Z., Wang C. (2018): A high-density EST-SSR-based genetic map and QTL analysis of dwarf trait in Cucurbita pepo L. International Journal of Molecular Sciences, 19: 3140. https://doi.org/10.3390/ijms19103140
 
Yang L., Koo D.H., Li Y., Zhang X., Luan F., Havey M.J., Jiang J., Weng Y. (2012): Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. The Plant Journal, 71: 895–906. https://doi.org/10.1111/j.1365-313X.2012.05017.x
 
Yeh F.C., Boyle T., Rongcai Y., Ye Z., Xian J. (1999): POPGENE Version 1.31. A Microsoft window-based freeware for population genetic analysis. Available at https://sites.ualberta.ca/~fyeh/popgene.pdf/.
 
Zheng Y.H., Alverson A.J., Wang Q.F., Palmer J.D. (2013): Chloroplast phylogeny of Cucurbita: evolution of the domesticated and wild species. Journal of Systematics and Evolution, 51: 326–334. https://doi.org/10.1111/jse.12006
 
Zheng Y., Wu S., Bai Y., Sun H., Jiao C., Guo S., Zhao K., Blanca J., Zhang Z., Huang S., Xu Y., Weng Y., Mazourek M. K., Reddy U., Ando K., McCreight J.D., Schaffer A.A., Burger J., Tadmor Y., Katzir N., Tang X., Liu Y., Giovannoni J.J., Ling K.S., Wechter W.P., Levi A., Garcia-Mas J., Grumet R., Fei Z. (2019): Cucurbit Genomics Database (CuGenDB): a central portal for comparative and functional genomics of cucurbit crops. Nucleic Acids Research, 47: 1128–1136. https://doi.org/10.1093/nar/gky944
 
supplementary materialdownload PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti