The development and validation of new DNA markers linked to the thousand-grain weight QTL in bread wheat (Triticum aestivum L.)

https://doi.org/10.17221/35/2019-CJGPB
supplementary materialdownload PDF

Thousand-grain weight (TGW) is an important trait affecting wheat production. We previously identified a major quantitative trait loci (QTL) controlling the TGW on the 2D chromosome of wheat using a recombinant inbred line (RIL) population constructed by the cross between Tibetan semi-wild wheat Q1028 (Q1028) and Zhengmai 9023 (ZM9023). The positive allele at this QTL is from ZM9023. To further characterise this QTL, here, we try to develop and validate the high-resolution melting (HRM) and sequence-characterised amplified region (SCAR) markers. One HRM marker (0C98-411) and two SCAR markers (E301-700 and B0BB-10470) were developed and integrated into the genetic map. All of these three markers were validated in three populations with different genetic backgrounds. 0C98-411 is the most closely linked marker that could trace QTgw.sau-2D in molecular marker assisted breeding.

References:
Avni R., Nave M., Barad O., Baruch K., Twardziok S.O., Gundlach H., Hale I., Mascher M., Spannag M., Wiebe K., Jordan K.W., Golan G., Deek J., Ben-Zvi B., Ben-Zvi G., Himmelbach A., MacLachlan R.P., Sharpe A.G., Fritz A., Ben-David R., Budak H., Fahima T., Koro A., Faris J.D., Hernandez A., Mike M.A., Levy A.A., Steffenson B., Maccaferri M., Tuberosa R., Cattivelli L., Faccioli P., Ceriotti A., Kashkush K., Pourkheirandish M., Komatsuda T., Eilam T., Sela H., Sharon A., Ohad N., Chamovitz D.A., Mayer K.F.X., Stein N., Ronen G., Peleg Z., Pozniak C.J., Akhunov E.D., Distelfeld A. (2017): Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 357: 93–97. https://doi.org/10.1126/science.aan0032
 
Badaeva E.D., Dedkova O.S., Gay G., Pukhalskyi V.A., Zelenin A.V., Bernard S., Bernard M. (2007): Chromosomal rearrangements in wheat: their types and distribution. Genome, 50: 907–926. https://doi.org/10.1139/G07-072
 
Botticella E., Sestili F., Hernandez-Lopez A., Phillips A., Lafiandra D. (2011): High resolution melting analysis for the detection of EMS induced mutations in wheat Sbella genes. BMC Plant Biology, 11: 156. https://doi.org/10.1186/1471-2229-11-156
 
Chen X., Yang D., Su M., Cheng H., Xing H., Chai S., Li W. (2014): Genetical characteristic of stay-green of flag leaf after flowering in Recombinant Inbred Lines (RILs) of wheat and its correlation analysis with grain weight under drought stress. Agricultural Research in the Arid Areas, 32: 57. (in Chinese)
 
Dufresne S.D., Belloni D.R., Wells W.A., Tsongalis G.J. (2006): BRCA1 and BRCA2 mutation screening using SmartCycler II high-resolution melt curve analysis. Archives of Pathology and Laboratory Medicine, 130: 185–187.
 
Farrar J.S., Wittwer C.T. (2017): High-resolution melting curve analysis for molecular diagnostics. Chapter 6. In: Patrinos G.P. (ed.): Molecular Diagnostics. 3rd Ed., Academic Press: 79–102.
 
Herrmann M.G., Durtschi J.D., Bromley L.K., Wittwer C.T., Voelkerding K.V. (2006): Amplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes. Clinical Chemistry, 52: 494–503. https://doi.org/10.1373/clinchem.2005.063438
 
Huang X., Zhu M., Zhuang L., Zhang S., Wang J., Chen X., Wang D., Chen J., Bao Y., Guo G., Zhang J., Feng Y., Chu C., Du P., Qi Z., Wang H., Chen P. (2018): Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theoretical and Applied Genetics, 131: 1967–1986. https://doi.org/10.1007/s00122-018-3126-2
 
IWGSC (The International Wheat Genome Sequencing Consortium) (2014): A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345: 1251788.
 
Jia J., Zhao S., Kong X., Li Y., Zhao G., He W., Appels R., Pfeifer M., Tao Y., Zhang X., Jing R., Zhang C., Ma Y., Gao L., Gao C., Spannagl M., Mayer K., Li D., Pan S., Zheng F., Hu Q., Xia X., Li J., Liang Q., Chen J., Wicker T., Gou C., Kuang H., He G., Luo Y., Keller B., Xia Q., Lu P., Wang J., Zou H., Zhang R., Xu J., Gao J., Middleton C., Quan Z., Liu G., Wang J., International Wheat Genome Sequencing Consortium, Yang H., Liu X., He Z., Mao L., Wang J. (2013): Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature, 469: 91. https://doi.org/10.1038/nature12028
 
Ling H., Zhao S., Liu D., Wang J., Sun H., Zhang C., Fan H., Li D., Dong L., Tao Y., Gao C., Wu H., Li Y., Cui Y., Guo X., Zheng S., Wang B., Yu K., Liang Q., Yang W., Lou X., Chen J., Feng M., Jian J., Zhang X., Luo G., Jiang Y., Liu J., Wang Z., Sha Y., Zhang B., Wu H., Tang D., Shen Q., Xue P., Zou S., Wang X., LiuX., Wang F., Yang Y., An X., Dong Z., Zhang K., Zhang X., Luo M., Dvorak J., Tong Y., Wang J., Yang H., Li Z., Wang D., Zhang A., Wang J. (2013): Draft genome of the wheat A-genome progenitor Triticum urartu. Nature, 496: 87. https://doi.org/10.1038/nature11997
 
Lipsky R.H., Mazzanti C.M., Rudolph J.G., Xu K., Vyas G., Bozak D., Radel M.Q., Goldman D. (2001): DNA melting analysis for detection of single nucleotide polymorphisms. Clinical Chemistry, 47: 635–644.
 
Luo M.C., Gu Y.Q., Puiu D., Wang H., Twardziok S.O., Deal K.R., Huo N., Zhu T., Wang L., Wang Y., McGuire P.E., Liu S., Long H., Ramasamy R.K., Rodriguez J.C., Van S.L., Yuan L., Wang Z., Xia Z., Xiao L., Anderson O.D., Ouyang S., Liang Y., Zimin A.V., Pertea G., Qi P., Bennetzen J.L., Dai X., Dawson M.W., Müller H.G., Kugler K., Rivarola-Duarte L., Spannagl M., Mayer K.F.X., Lu F.H., Bevan M.W., Leroy P., Li P., You F.M., Sun Q., Liu Z., Lyons E., Wicker T., Salzberg S.L., Devos K.M., Dvořák J. (2017): Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature, 551: 498. https://doi.org/10.1038/nature24486
 
Luo W., Ma J., Zhou X.H., Sun M., Kong X.C., Wei Y.M., Jiang Y.F., Qi P.F., Jiang Q.T., Liu Y.X., Peng Y.Y., Chen G.Y., Zheng Y.L., Liu C.J., Lan X.J. (2016): Identification of quantitative trait loci controlling agronomic traits indicates breeding potential of Tibetan semi wild wheat (Triticum aestivum ssp. tibetanum). Crop Science, 56: 2410–2420. https://doi.org/10.2135/cropsci2015.11.0700
 
Ma J., Stiller J., Wei Y.M., Zheng Y.L., Devos K.M., Doležel J., Liu C.J. (2014): Extensive pericentric rearrangements in the bread wheat (Triticum aestivum L.) genotype “Chinese Spring” revealed from chromosome shotgun sequence data. Genome Biology and Evolution, 6: 3039–3048. https://doi.org/10.1093/gbe/evu237
 
Ma J., Stiller J., Zheng Z., Liu Y.X., Wei Y.M., Zheng Y.L., Liu C. (2015a): A high-throughput pipeline for detecting locus-specific polymorphism in hexaploid wheat (Triticum aestivum L.). Plant Methods, 11: 39. https://doi.org/10.1186/s13007-015-0082-6
 
Ma J., Stiller J., Zheng Z., Wei Y.M., Zheng Y.L., Yan G.J., Doležel J., Liu Ch.J. (2015b): Putative interchromosomal rearrangements in the hexaploid wheat (Triticum aestivum L.) genotype ‘Chinese Spring’ revealed by gene locations on homeologous chromosomes. BMC Evolutionary Biology, 15: 37. https://doi.org/10.1186/s12862-015-0313-5
 
Ma J., Sun M., Yang C.C., Qin N.N., Zhang H., Ding P.Y., Mu Y., Tang H.P., Lan X.J. (2018): Development and validation of markers for spike density QTL, Qsd. sau-7A from Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum). Indian Journal of Genetics and Plant Breeding, 78: 11–18.
 
Ma J., Qin N.N., Cai B., Chen G.Y., Ding P., Zhang H., Yang C.C., Huang L., Mu Y., Tang H.P., Liu Y.X., Wang J.R., Qi P.F., Jiang Q.T., Zheng Y.L., Liu C.J., Lan X.J., Wei Y.M. (2019): Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828. Theoretical and Applied Genetics, 132: 1363–1373. https://doi.org/10.1007/s00122-019-03283-7
 
Murray M.G., Thompson W.F. (1980): Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8: 4321–4326. https://doi.org/10.1093/nar/8.19.4321
 
Paterson A.H., Lander E.S., Hewitt J.D., Peterson S., Lincoln S.E., Tanksley S.D. (1988): Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 335: 721. https://doi.org/10.1038/335721a0
 
Pirulli D., Boniotto M., Puzzer D., Spanò A., Amoroso A., Crovella S. (2000): Flexibility of melting temperature assay for rapid detection of insertions, deletions, and single-point mutations of the AGXT gene responsible for type 1 primary hyperoxaluria. Clinical Chemistry, 46: 1842–1844.
 
Röder M.S., Huang X.Q., Börner A. (2008): Fine mapping of the region on wheat chromosome 7D controlling grain weight. Functional and Integrative Genomics, 8: 79–86. https://doi.org/10.1007/s10142-007-0053-8
 
Saintenac C., Jiang D., Wang S., Akhunov E. (2013): Sequence-based mapping of the polyploid wheat genome. G3: Genes, Genomes, Genetics, 3: 1105–1114. https://doi.org/10.1534/g3.113.005819
 
Song X.J. Huang W., Shi M., Zhu M.Zh., Lin H.X. (2007): A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 39: 623. https://doi.org/10.1038/ng2014
 
Tahmasebi S., Heidari B., Pakniyat H., McIntyre L. (2017): Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome, 60: 26–45. https://doi.org/10.1139/gen-2016-0017
 
Wang S., Li S., Liu Q., Wu K., Zhang J.Q., Wang Sh.S., Wang Y., Chen X.B., Zhang Y., Gao C.X., Wang F., Huang H.X., Fu X D. (2015a): The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics, 47: 949. https://doi.org/10.1038/ng.3352
 
Wang Y., Xiong G., Hu J., Jiang L., Yu H., Xu J., Fang Y., Zeng L., Xu E., Xu J., Ye W., Meng X., Liu R., Chen H., Jing Y., Wang Y., Zhu X., Li J., Qian Q. (2015b): Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature Genetics, 47: 944–948.
 
Wittwer C.T., Reed G.H., Gundry C.N.,Vandersteen G.J., Pryor R.J. (2003): High-resolution genotyping by amplicon melting analysis using LCGreen. Clinical Chemistry, 49:853–860. https://doi.org/10.1373/49.6.853
 
Wu Q.H., Chen Y.X., Zhou S.H., Fu L., Chen J.J., Xiao Y., Zhang D., Ouyang S.H., Zhao X.J., Cui Y., Zhang D.Y., Liang Y., Wang Z.Z., Xie J.Z., Qin J.X., Wang G.X., Li D.L., Huang Y.L., Yu M.H., Lu P., Wang L.L., Wang L., Wang H., Dang C., Li J., Zhang Y., Peng H.R., Yuan C.G., You M.S., Sun Q.X., Wang J.R., Wang L.X., Luo M.C., Han J., Liu Z.Y. (2015): High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda1817 × Beinong6. Plos One, 10: e0118144.
 
Xu Q., Chen W., Xu Z. (2015): Relationship between grain yield and quality in rice germplasms grown across different growing areas. Breeding Science, 65: 226–232. https://doi.org/10.1270/jsbbs.65.226
 
Yu M., Mao S.L., Hou D.B., Chen G.Y., Pu Z.-E., Li W., Lan X.-J., Jiang Q., Liu Y.X., Deng M., Wei Y.M. (2018): Analysis of contributors to grain yield in wheat at the individual quantitative trait locus level. Plant Breeding, 137: 35–49. https://doi.org/10.1111/pbr.12555
 
Zhang X.Y., Gao Y.N. (2004): To design PCR primers with Oligo 6 and Primer Premier 5. Bioinformatics, 4: 15. (in Chinese)
 
supplementary materialdownload PDF

© 2019 Czech Academy of Agricultural Sciences