Development of the new waxy winter wheat cultivars Eldija and Sarta

Liatukas Ž., Ruzgas V., Gorash A., Cecevičienė J., Armonienė R., Statkevičiūtė G., Jaškūnė K., Brazauskas G. (2021): Development of the new waxy winter wheat cultivars Eldija and Sarta. Czech J. Genet. Plant Breed., 57: 149−157.

download PDF

Two new waxy winter wheat (Triticum aestivum L.) cultivars, Eldija and Sarta, were developed at the Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry and released in Lithuania in 2021. The cultivars were developed using waxy wheat material from Nebraska, the United States of America. The mean yield of Eldija and Sarta at five locations over three testing years was 7.56 and 7.21 t/ha or 79.63 and 75.95%, respectively, compared to the yield of the standard cultivars. Eldija and Sarta should be grown under high input conditions due to the relatively low resistance to leaf spot diseases and Fusarium head blight and medium tolerance to lodging. An amylose content of 0.68% and 0.36% of Eldija and Sarta, respectively, a very low falling number (about 60 s), a lower flour yield and higher water absorption compared to common wheat and the reaction to iodine staining (brown colour) characterised the new cultivars as fully waxy wheats. These cultivars are intended for the potential demand from commercial companies for special use in the food industry.

Bundessortenamt (2017): Beschreibende Sortenliste – Getreide, Mais, Öl- und Faserpflanzen, Leguminosen, Rüben und Zwischenfrüchte. Hannover, German Federal Plant Variety Office: 94–119.
Caramanico R., Marti A., Vaccino P., Bogetta G., Cappa C., Lucisano M., Pagani M.A. (2018): Rheological properties and baking performance of new waxy lines: strengths and weaknesses. Food Science and Technology, 88: 159–164.
Chao S., Sharp P.J., Worland A.J., Warham E.J., Koebner R.M.D., Gale M.D. (1989): RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theoretical and Applied Genetics, 78: 495–504.
Choi I., Kang Ch.-S., Cheong Y-K., Hyun J.-N., Kim K.-J. (2012): Substitution normal and waxy-type whole wheat flour on dough and baking properties. Preventive Nutrition and Food Science, 17: 197–202.
Debiton C., Bancel E., Chambon C., Rhazi L., Branlard G. (2010): Effect of the three waxy null alleles on enzymes associated to wheat starch granules using proteomic approach. Journal of Cereal Science, 52: 466–474.
Funnell-Harris D.L., Graybosch R.A., O’Neil P.M., Dura Z.T., Wegul S.N. (2019): Amylose-free (“waxy”) wheat colonization by Fusarium spp. and response to Fusarium head blight. Plant Disease, 103: 972–983.
Gorash A., Armonienė R., Liatukas Ž., Brazauskas G. (2017): The relationship among freezing tolerance, vernalization requirement, Ppd alleles and winter hardiness in European wheat cultivars. Journal of Agricultural Sciences, 155: 1353–1370.
Grafenauer S., Miglioretto C., Solah V., Curtain F. (2020): Review of the sensory and physico-chemical properties of red and white wheat: which makes the best whole grain? Foods, 9: 136.
Graybosch R.A., Baenziger P.S., Santra D.K., Regassa T., Jin Y., Kolmer J., Wegulo S., Bai G., Amand P.St., Chen X., Seaburn B.W., Dowell F.E., Bowden R.L., Marshall D.M. (2014): Registration of ‘Mattern’ waxy (amylose-free) winter wheat. Journal of Plant Registrations, 8: 43–48.
Graybosch R.A., Baenziger P.S., Bowden R.L., Dowell F., Dykes L., Jin, Y., Marshal D.S., Ohm J.-B., Caffe-Treml M. (2018): Release of 19 waxy winter wheat germplasm with observations on their grain yield stability. Journal of Plant Registrations, 12: 152–156.
Graybosch R.A., Baenziger P.S., Santra D.K., Regassa T., Jin Y., Kolmer J., Bai G., Amand P.St., Chen R., Seabourn B. (2019): Registration of ‘Matterhorn’ hard white waxy winter wheat. Journal of Plant Registrations, 13: 207–211.
Hung P.V., Maeda T., Morita N. (2006): Waxy and high-amylose wheat starches and flours – characteristics. Functionality and application. Trends in Food Science and Technology, 17: 448–456.
Iorgachova K., Makarova O., Khvostenko K. (2018): The influence of the waxy wheat flour on the cake’s staling. Applied Research in Technics, Technologies and Educations, 6: 359–362.
Kim W.S., Seib P.A. (1993): Apparent restriction of starch swelling in cooked noodles by lipids in some commercial wheat flours. Cereal Chemistry, 70: 367–372.
Morris C.F., Kiszona A.M., Peden G.L., Pumprey M.O. (2021): Registration of ‘USDA Lori’ soft white spring waxy wheat. Journal of Plant Registrations, 15: 172–176.
Nakamura T., Yamamori H., Hirano S., Nagamine T. (1995): Production of waxy (amylose-free) wheats. Molecular and General Genetics, 248: 253–259.
Ohm J.-B., Dykes L., Graybosch R.A. (2019): Variation of protein molecular weight distribution parameters and their correlations with gluten and mixing characteristics for winter waxy wheat. Cereal Chemistry, 96: 302–312.
Park C.-S., Pena R.J., Baik B.-K., Kang C.-S., Heo H.-Y., Cheong Y.-K., Woo S.-H. (2009): Allelic variation of glutenin, granule-bound starch synthase I and puroindoline in Korean wheat cultivar. Korean Journal of Crop Science, 54: 181–191.
SECOBRA Recherches (2021): Waxy wheat. Available at (accessed 30. 3. 2021)
Shevkani K., Singh N., Bajaj R., Kaur A. (2017): Wheat starch production, structure, functionality and applications – a review. International Journal of Food Science and Technology, 52: 38–58.
Singh S., Vikram P., Sehgal D., Burgueno J., Sharma A., Singh S.K., Sansaloni C.P., Joynson R., Brabbs T., Ortiz C., Solis-Moya E., Govindan V., Gupta N., Sidhu H.S., Basandrai A.K., Basandrai D., Ledesma-Ramires L., Suaste-Franco M., Fuente-Davila G., Moreno J.I., Sonder K., Singh V.K., Singh S., Shokat S., Arif M.A.R., Laghari K.A., Srivastava P., Bhavadi S., Kumar S., Pal D., Jaiswal J.P., Kumar U., Chaudhary H.K., Crossa J., Payne T.S., Imtiaz M., Sohu V.S., Singh G.P., Bains N.S., Hall A., Pixley K.V. (2018): Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security. Scientific Reports, 8: 12527.
Slafer G.A., Savin R., Sadras V.O. (2014): Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crop Research, 157: 71–83.
SPSMA (2019): Data of plant variety value of cultivation in 2018, Lithuania. Available at (accessed 12. 1. 2021)
SPSMA (2020): Data of plant variety value of cultivation in 2019, Lithuania. Available at (accessed 12. 1. 2021)
SPSMA (2021a): Data of plant variety value of cultivation in 2010. Available at (accessed 121. 1. 2021)
SPSMA (2021b): Lithuanian national list of plant varieties 2021. Available at (accessed 8. 4. 2021)
Vafin R., Rzhanova I., Askhadullin D., Askhadullin D., Vasilova N. (2018): Screening of the genotypes of bread wheat (Triticum aestivum L.) by the allelic variants of waxy genes and HMW glutenin subunits. Acta Agrobotanica, 71: 1746.
Wang S., Wang J., Zhang W., Li C., Yu J., Wang S. (2015): Molecular order and functional properties of starches from three waxy wheat varieties grown in China. Food Chemistry, 181: 43–50.
Xu B., Mense A., Ambrose K., Graybosch R., Shi Y.-C. (2018): Milling performance of waxy wheat and wild type wheat using two laboratory milling methods. Cereal Chemistry, 95: 708–719.
Yamamori M., Nakamura T., Endo T.R., Nagamine T. (1994): Waxy protein deficiency and chromosomal location of coding genes in common wheat. Theoretical and Applied Genetics, 89: 179–184.
Zhang H., Zhang W., Xu C., Zhou X. (2014): Studies on the rheological and gelatinization characteristics of waxy wheat flour. International Journal of Biological Macromolecules, 64: 123–129.
Zhu T., Jackson D.S., Wehling R.L., Geera B. (2008): Comparison of amylose determination methods and the development of a dual wavelength iodine binding technique. Cereal Chemistry, 85: 51–58.
Zi Y., Ding J., Song J., Humphreys G., Peng Y., Li C., Zhu X., Guo W. (2018): Grain yield, starch content and activities of key enzymes of waxy and non-waxy wheat (Triticum aestivum L.). Scientific Reports, 8: 4548.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti