Development of the new waxy winter wheat cultivars Eldija and Sarta

https://doi.org/10.17221/37/2021-CJGPBCitation:

Liatukas Ž., Ruzgas V., Gorash A., Cecevičienė J., Armonienė R., Statkevičiūtė G., Jaškūnė K., Brazauskas G. (2021): Development of the new waxy winter wheat cultivars Eldija and Sarta. Czech J. Genet. Plant Breed., 57: 149−157.

download PDF

Two new waxy winter wheat (Triticum aestivum L.) cultivars, Eldija and Sarta, were developed at the Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry and released in Lithuania in 2021. The cultivars were developed using waxy wheat material from Nebraska, the United States of America. The mean yield of Eldija and Sarta at five locations over three testing years was 7.56 and 7.21 t/ha or 79.63 and 75.95%, respectively, compared to the yield of the standard cultivars. Eldija and Sarta should be grown under high input conditions due to the relatively low resistance to leaf spot diseases and Fusarium head blight and medium tolerance to lodging. An amylose content of 0.68% and 0.36% of Eldija and Sarta, respectively, a very low falling number (about 60 s), a lower flour yield and higher water absorption compared to common wheat and the reaction to iodine staining (brown colour) characterised the new cultivars as fully waxy wheats. These cultivars are intended for the potential demand from commercial companies for special use in the food industry.

References:
Bundessortenamt (2017): Beschreibende Sortenliste – Getreide, Mais, Öl- und Faserpflanzen, Leguminosen, Rüben und Zwischenfrüchte. Hannover, German Federal Plant Variety Office: 94–119.
 
Caramanico R., Marti A., Vaccino P., Bogetta G., Cappa C., Lucisano M., Pagani M.A. (2018): Rheological properties and baking performance of new waxy lines: strengths and weaknesses. Food Science and Technology, 88: 159–164.
 
Chao S., Sharp P.J., Worland A.J., Warham E.J., Koebner R.M.D., Gale M.D. (1989): RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theoretical and Applied Genetics, 78: 495–504.  https://doi.org/10.1007/BF00290833
 
Choi I., Kang Ch.-S., Cheong Y-K., Hyun J.-N., Kim K.-J. (2012): Substitution normal and waxy-type whole wheat flour on dough and baking properties. Preventive Nutrition and Food Science, 17: 197–202. https://doi.org/10.3746/pnf.2012.17.3.197
 
Debiton C., Bancel E., Chambon C., Rhazi L., Branlard G. (2010): Effect of the three waxy null alleles on enzymes associated to wheat starch granules using proteomic approach. Journal of Cereal Science, 52: 466–474. https://doi.org/10.1016/j.jcs.2010.07.012
 
Funnell-Harris D.L., Graybosch R.A., O’Neil P.M., Dura Z.T., Wegul S.N. (2019): Amylose-free (“waxy”) wheat colonization by Fusarium spp. and response to Fusarium head blight. Plant Disease, 103: 972–983.  https://doi.org/10.1094/PDIS-05-18-0726-RE
 
Gorash A., Armonienė R., Liatukas Ž., Brazauskas G. (2017): The relationship among freezing tolerance, vernalization requirement, Ppd alleles and winter hardiness in European wheat cultivars. Journal of Agricultural Sciences, 155: 1353–1370.
 
Grafenauer S., Miglioretto C., Solah V., Curtain F. (2020): Review of the sensory and physico-chemical properties of red and white wheat: which makes the best whole grain? Foods, 9: 136.  https://doi.org/10.3390/foods9020136
 
Graybosch R.A., Baenziger P.S., Santra D.K., Regassa T., Jin Y., Kolmer J., Wegulo S., Bai G., Amand P.St., Chen X., Seaburn B.W., Dowell F.E., Bowden R.L., Marshall D.M. (2014): Registration of ‘Mattern’ waxy (amylose-free) winter wheat. Journal of Plant Registrations, 8: 43–48.  https://doi.org/10.3198/jpr2013.08.0045crc
 
Graybosch R.A., Baenziger P.S., Bowden R.L., Dowell F., Dykes L., Jin, Y., Marshal D.S., Ohm J.-B., Caffe-Treml M. (2018): Release of 19 waxy winter wheat germplasm with observations on their grain yield stability. Journal of Plant Registrations, 12: 152–156.  https://doi.org/10.3198/jpr2017.03.0018crg
 
Graybosch R.A., Baenziger P.S., Santra D.K., Regassa T., Jin Y., Kolmer J., Bai G., Amand P.St., Chen R., Seabourn B. (2019): Registration of ‘Matterhorn’ hard white waxy winter wheat. Journal of Plant Registrations, 13: 207–211.  https://doi.org/10.3198/jpr2018.09.0057crc
 
Hung P.V., Maeda T., Morita N. (2006): Waxy and high-amylose wheat starches and flours – characteristics. Functionality and application. Trends in Food Science and Technology, 17: 448–456.  https://doi.org/10.1016/j.tifs.2005.12.006
 
Iorgachova K., Makarova O., Khvostenko K. (2018): The influence of the waxy wheat flour on the cake’s staling. Applied Research in Technics, Technologies and Educations, 6: 359–362.  https://doi.org/10.15547/artte.2018.04.012
 
Kim W.S., Seib P.A. (1993): Apparent restriction of starch swelling in cooked noodles by lipids in some commercial wheat flours. Cereal Chemistry, 70: 367–372.
 
Morris C.F., Kiszona A.M., Peden G.L., Pumprey M.O. (2021): Registration of ‘USDA Lori’ soft white spring waxy wheat. Journal of Plant Registrations, 15: 172–176. https://doi.org/10.1002/plr2.20115
 
Nakamura T., Yamamori H., Hirano S., Nagamine T. (1995): Production of waxy (amylose-free) wheats. Molecular and General Genetics, 248: 253–259.  https://doi.org/10.1007/BF02191591
 
Ohm J.-B., Dykes L., Graybosch R.A. (2019): Variation of protein molecular weight distribution parameters and their correlations with gluten and mixing characteristics for winter waxy wheat. Cereal Chemistry, 96: 302–312.  https://doi.org/10.1002/cche.10124
 
Park C.-S., Pena R.J., Baik B.-K., Kang C.-S., Heo H.-Y., Cheong Y.-K., Woo S.-H. (2009): Allelic variation of glutenin, granule-bound starch synthase I and puroindoline in Korean wheat cultivar. Korean Journal of Crop Science, 54: 181–191.
 
SECOBRA Recherches (2021): Waxy wheat. Available at https://secobra.fr/detail_variete/waximum (accessed 30. 3. 2021)
 
Shevkani K., Singh N., Bajaj R., Kaur A. (2017): Wheat starch production, structure, functionality and applications – a review. International Journal of Food Science and Technology, 52: 38–58.  https://doi.org/10.1111/ijfs.13266
 
Singh S., Vikram P., Sehgal D., Burgueno J., Sharma A., Singh S.K., Sansaloni C.P., Joynson R., Brabbs T., Ortiz C., Solis-Moya E., Govindan V., Gupta N., Sidhu H.S., Basandrai A.K., Basandrai D., Ledesma-Ramires L., Suaste-Franco M., Fuente-Davila G., Moreno J.I., Sonder K., Singh V.K., Singh S., Shokat S., Arif M.A.R., Laghari K.A., Srivastava P., Bhavadi S., Kumar S., Pal D., Jaiswal J.P., Kumar U., Chaudhary H.K., Crossa J., Payne T.S., Imtiaz M., Sohu V.S., Singh G.P., Bains N.S., Hall A., Pixley K.V. (2018): Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security. Scientific Reports, 8: 12527.  https://doi.org/10.1038/s41598-018-30667-4
 
Slafer G.A., Savin R., Sadras V.O. (2014): Coarse and fine regulation of wheat yield components in response to genotype and environment. Field Crop Research, 157: 71–83. https://doi.org/10.1016/j.fcr.2013.12.004
 
SPSMA (2019): Data of plant variety value of cultivation in 2018, Lithuania. Available at http://www.vatzum.lt/uploads/documents/tikras_2019_duomenu_leidinys_2.pdf (accessed 12. 1. 2021)
 
SPSMA (2020): Data of plant variety value of cultivation in 2019, Lithuania. Available at http://www.vatzum.lt/uploads/documents/augalu_veisles/2020_duomenu_leidinys.pdf (accessed 12. 1. 2021)
 
SPSMA (2021a): Data of plant variety value of cultivation in 2010. Available at http://www.vatzum.lt/en/activity/fields-of-activity/plant-variety/ (accessed 121. 1. 2021)
 
SPSMA (2021b): Lithuanian national list of plant varieties 2021. Available at http://www.vatzum.lt/uploads/documents/augalu_veisles/2021_navs_n.pdf (accessed 8. 4. 2021)
 
Vafin R., Rzhanova I., Askhadullin D., Askhadullin D., Vasilova N. (2018): Screening of the genotypes of bread wheat (Triticum aestivum L.) by the allelic variants of waxy genes and HMW glutenin subunits. Acta Agrobotanica, 71: 1746. https://doi.org/10.5586/aa.1746
 
Wang S., Wang J., Zhang W., Li C., Yu J., Wang S. (2015): Molecular order and functional properties of starches from three waxy wheat varieties grown in China. Food Chemistry, 181: 43–50.  https://doi.org/10.1016/j.foodchem.2015.02.065
 
Xu B., Mense A., Ambrose K., Graybosch R., Shi Y.-C. (2018): Milling performance of waxy wheat and wild type wheat using two laboratory milling methods. Cereal Chemistry, 95: 708–719.  https://doi.org/10.1002/cche.10086
 
Yamamori M., Nakamura T., Endo T.R., Nagamine T. (1994): Waxy protein deficiency and chromosomal location of coding genes in common wheat. Theoretical and Applied Genetics, 89: 179–184.  https://doi.org/10.1007/BF00225138
 
Zhang H., Zhang W., Xu C., Zhou X. (2014): Studies on the rheological and gelatinization characteristics of waxy wheat flour. International Journal of Biological Macromolecules, 64: 123–129.  https://doi.org/10.1016/j.ijbiomac.2013.12.004
 
Zhu T., Jackson D.S., Wehling R.L., Geera B. (2008): Comparison of amylose determination methods and the development of a dual wavelength iodine binding technique. Cereal Chemistry, 85: 51–58.  https://doi.org/10.1094/CCHEM-85-1-0051
 
Zi Y., Ding J., Song J., Humphreys G., Peng Y., Li C., Zhu X., Guo W. (2018): Grain yield, starch content and activities of key enzymes of waxy and non-waxy wheat (Triticum aestivum L.). Scientific Reports, 8: 4548.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti