Aboagye I.A., Lynch J.P., Church J.S., Baah J., Beauchemin K.A. (2015): Digestibility and growth performance of sheep fed alfalfa hay treated with fibrolytic enzymes and a ferulic acid esterase producing bacterial additive. Animal Feed Science and Technology, 203, 53-66
https://doi.org/10.1016/j.anifeedsci.2015.02.010
Agrawal R., Singh N. R., Ribeiro F. H., Delgass W. N. (2007): Sustainable fuel for the transportation sector. Proceedings of the National Academy of Sciences, 104, 4828-4833
https://doi.org/10.1073/pnas.0609921104
Austin-Phillips S., Ziegelhoffer T. (2001): The Production of Value-added Proteins in Transgenic Alfalfa. Molecular Breeding of Forage Crops. Dordrecht, Kluwer: 285–301.
Avraham Tal, Badani Hanna, Galili Shmuel, Amir Rachel (2005): Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionine γ-synthase gene. Plant Biotechnology Journal, 3, 71-79
https://doi.org/10.1111/j.1467-7652.2004.00102.x
Bagga S., Adams H.P., Rodriguez F.D., Kemp J.D., Sengupta-Gopalan C. (2004): Coexpression of the maize delta-zein and beta-zein genes results in stable accumulation of delta-zein in endoplasmic reticulum-derived protein bodies formed by beta-zein. Plant Cell, 99: 1683–1696.
Bao Ai-Ke, Wang Suo-Min, Wu Guo-Qiang, Xi Jie-Jun, Zhang Jin-Lin, Wang Chun-Mei (2009): Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Science, 176, 232-240
https://doi.org/10.1016/j.plantsci.2008.10.009
Bao Ai-Ke, Du Bao-Qiang, Touil Leila, Kang Peng, Wang Qiang-Long, Wang Suo-Min (2016): Co-expression of tonoplast Cation/H
+ antiporter and H
+ -pyrophosphatase from xerophyte
Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions. Plant Biotechnology Journal, 14, 964-975
https://doi.org/10.1111/pbi.12451
Barry T.N., McNabb W.C. (1999): The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. British Journal of Nutrition, 814: 263–272.
Basak Jolly, Nithin Chandran (2015): Targeting Non-Coding RNAs in Plants with the CRISPR-Cas Technology is a Challenge yet Worth Accepting. Frontiers in Plant Science, 6, -
https://doi.org/10.3389/fpls.2015.01001
Baucher M., Bernard-Vailhe M.A., Chabbert B., Besle J.M., Opsomer C., Van Montagu M., Botterman J. (1999): Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility. Plant Molecular Biology, 393: 437–447.
https://doi.org/10.1023/A:1006182925584
Belhaj Khaoula, Chaparro-Garcia Angela, Kamoun Sophien, Nekrasov Vladimir (2013): Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 9, 39-
https://doi.org/10.1186/1746-4811-9-39
Brito A.F., Broderick G.A. (2006): Effect of Varying Dietary Ratios of Alfalfa Silage to Corn Silage on Production and Nitrogen Utilization in Lactating Dairy Cows. Journal of Dairy Science, 89, 3924-3938
https://doi.org/10.3168/jds.S0022-0302(06)72435-3
Brummer E. Charles (2004): Applying Genomics to Alfalfa Breeding Programs. Crop Science, 44, 1904-
https://doi.org/10.2135/cropsci2004.1904
Buxton D.R., Redfearn D.D. (1997): Plant limitations to fiber digestion and utilization. The Journal of Nutrition, 127 (5 Suppl): 814S–818S.
Calderini Ornella, Bovone Tessa, Scotti Carla, Pupilli Fulvio, Piano Efisio, Arcioni Sergio (2007): Delay of leaf senescence in Medicago sativa transformed with the ipt gene controlled by the senescence-specific promoter SAG12. Plant Cell Reports, 26, 611-615
https://doi.org/10.1007/s00299-006-0262-y
Castroluna A., Ruiz O.M., Quiroga A.M. (2014): Effects of salinity and drought stress on germination, biomass and growth in three varieties of Medicago sativa L. Avances en Investigación Agropecuaria, 18: 39–50.
Chandra Amaresh (2009): Screening global Medicago germplasm for weevil (Hypera postica Gyll.) tolerance and estimation of genetic variability using molecular markers. Euphytica, 169, 363-374
https://doi.org/10.1007/s10681-009-9969-5
Cheeke P.R. (1996): Biological effects of feed and forage saponins and their impacts on animal production. Advances in Experimental Medical Biology, 405: 377–385.
Chen Fang, Dixon Richard A (2007): Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology, 25, 759-761
https://doi.org/10.1038/nbt1316
Chen Fang, Srinivasa Reddy Marry S., Temple Stephen, Jackson Lisa, Shadle Gail, Dixon Richard A. (2006): Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (
Medicago sativa L.). The Plant Journal, 48, 113-124
https://doi.org/10.1111/j.1365-313X.2006.02857.x
Cole D.J. (1985): Mode of action of glyphosate –a literature analysis. In: Grossbard E., Atkinson A. (eds): The Herbicide Glyphosate. Boston, Butterworth’s & Co: 48–75.
D’Aoust M.A., Lerouge P., Busse U., Bilodeau P. et al. (2004): Efficient and reliable production of pharmaceuticals in alfalfa. In: Fischer R., Schillberg S. (eds): Molecular Farming. Weinheim, Wiley-VCH: 1–12.
Duan Zhen, Zhang Daiyu, Zhang Jianquan, Di Hongyan, Wu Fan, Hu Xiaowen, Meng Xuanchen, Luo Kai, Zhang Jiyu, Wang Yanrong (2015): Co-transforming bar and CsALDH Genes Enhanced Resistance to Herbicide and Drought and Salt Stress in Transgenic Alfalfa (Medicago sativa L.). Frontiers in Plant Science, 6, -
https://doi.org/10.3389/fpls.2015.01115
Gallego-Giraldo Lina, Jikumaru Yusuke, Kamiya Yuji, Tang Yuhong, Dixon Richard A. (2011): Selective lignin downregulation leads to constitutive defense response expression in alfalfa (Medicago sativa L.). New Phytologist, 190, 627-639
https://doi.org/10.1111/j.1469-8137.2010.03621.x
Gallego-Giraldo L., Bhattarai K., Pislariu C. I., Nakashima J., Jikumaru Y., Kamiya Y., Udvardi M. K., Monteros M. J., Dixon R. A. (2014): Lignin Modification Leads to Increased Nodule Numbers in Alfalfa. PLANT PHYSIOLOGY, 164, 1139-1150
https://doi.org/10.1104/pp.113.232421
Guo D. (): Downregulation of Caffeic Acid 3-O-Methyltransferase and Caffeoyl CoA 3-O-Methyltransferase in Transgenic Alfalfa: Impacts on Lignin Structure and Implications for the Biosynthesis of G and S Lignin. THE PLANT CELL ONLINE, 13, 73-88
https://doi.org/10.1105/tpc.13.1.73
ISAAA (2016): Global Status of Commercialized Biotech/GM Crops: 2016. ISAAA Brief No. 52, Ithaca, ISAAA.
Jiang Qingzhen, Zhang Ji-Yi, Guo Xiulin, Monteros Maria J., Wang Zeng-Yu (2009): Physiological Characterization of Transgenic Alfalfa (
Medicago sativa ) Plants for Improved Drought Tolerance. International Journal of Plant Sciences, 170, 969-978
https://doi.org/10.1086/600138
Jin Taicheng, Chang Qing, Li Wangfeng, Yin Dongxu, Li Zhijian, Wang Deli, Liu Bao, Liu Lixia (2010): Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell, Tissue and Organ Culture (PCTOC), 100, 219-227
https://doi.org/10.1007/s11240-009-9628-5
Kang Peng, Bao Ai-Ke, Kumar Tanweer, Pan Ya-Qing, Bao Zhulatai, Wang Fei, Wang Suo-Min (2016): Assessment of Stress Tolerance, Productivity, and Forage Quality in T1 Transgenic Alfalfa Co-overexpressing ZxNHX and ZxVP1-1 from Zygophyllum xanthoxylum. Frontiers in Plant Science, 7, -
https://doi.org/10.3389/fpls.2016.01598
Kim W.S., Krishnan H.B. (2003): Allelic variation and differential expression of methionine-rich delta-zeins in maize inbred lines B73 and W23a1. Planta, 2171: 66–74.
Kineman Brian D., Brummer E. Charles, Paiva Nancy L., Birt Diane F. (2010): Resveratrol From Transgenic Alfalfa for Prevention of Aberrant Crypt Foci in Mice. Nutrition and Cancer, 62, 351-361
https://doi.org/10.1080/01635580903407213
Kumar Suresh (2011): Biotechnological advancements in alfalfa improvement. Journal of Applied Genetics, 52, 111-124
https://doi.org/10.1007/s13353-011-0028-2
Kumar S., Chandra A., Pandey K.C. (2008): Bacillus thuringiensis (Bt) transgenic crop: an environment friendly insect-pest management strategy. Journal of Environmental Biology, 295: 641–653.
Kumar Tanweer, Uzma , Khan Muhammad Ramzan, Abbas Zaheer, Ali Ghulam Muhammad (2014): Genetic Improvement of Sugarcane for Drought and Salinity Stress Tolerance Using Arabidopsis Vacuolar Pyrophosphatase (AVP1) Gene. Molecular Biotechnology, 56, 199-209
https://doi.org/10.1007/s12033-013-9695-z
Laudadio V., Ceci E., Lastella N. M. B., Introna M., Tufarelli V. (2014): Low-fiber alfalfa (Medicago sativa L.) meal in the laying hen diet: Effects on productive traits and egg quality. Poultry Science, 93, 1868-1874
https://doi.org/10.3382/ps.2013-03831
Li J.F., Zhang D., Sheen J. (2014): Cas9-based genome editing in Arabidopsis and tobacco. Methods in Enzymology, 546:459–472
Li Li, Yuan Hui (2013): Chromoplast biogenesis and carotenoid accumulation. Archives of Biochemistry and Biophysics, 539, 102-109
https://doi.org/10.1016/j.abb.2013.07.002
Li X., Weng J.K., Chapple C. (2008): Improvement of biomass through lignin modification. Plant Journal, 544: 569–581.
Liu C.Z., Yan L., Wei L.X., Zhang F., Qian X.J. (2008): Effects of cutting on the population dynamics of main insect pests on alfalfa. Ying Yong Sheng Tai Xue Bao, 193: 691–694.
Mathison G. W., Soofi-Siawash R., Klita P. T., Okine E. K., Sedgwick G. (1999): Degradability of alfalfa saponins in the digestive tract of sheep and their rate of accumulation in rumen fluid. Canadian Journal of Animal Science, 79, 315-319
https://doi.org/10.4141/A98-044
McCaslin M., Temple S.J., Tofte J.E. (2002): Methods for maximizing expression of transgenic traits in autopolyploid plants. US Patent Appl US-2002-0042928-A1.
McCoy T., Walker K. (1984): Alfalfa. In: Ammirato P.V., Evans D.A., Sharp W.R. Yamada Y. et al. (eds): Handbook of Plant Cell Culture. Vol 3. Crop Species, MacMillan Publishing Company: 171–192.
McKersie B. D., Bowley S. R., Harjanto E., Leprince O. (1996): Water-Deficit Tolerance and Field Performance of Transgenic Alfalfa Overexpressing Superoxide Dismutase. Plant Physiology, 111, 1177-1181
https://doi.org/10.1104/pp.111.4.1177
McKersie Bryan D., Murnaghan Julia, Jones Kim S., Bowley Stephen R. (2000): Iron-Superoxide Dismutase Expression in Transgenic Alfalfa Increases Winter Survival without a Detectable Increase in Photosynthetic Oxidative Stress Tolerance. Plant Physiology, 122, 1427-1438
https://doi.org/10.1104/pp.122.4.1427
McMahon L. R., McAllister T. A., Berg B. P., Majak W., Acharya S. N., Popp J. D., Coulman B. E., Wang Y., Cheng K.-J. (2000): A review of the effects of forage condensed tannins on ruminal fermentation and bloat in grazing cattle. Canadian Journal of Plant Science, 80, 469-485
https://doi.org/10.4141/P99-050
MENDIS M. H, POWER J. B., DAVEY M. R. (1991): Somatic Hybrids of the Forage Legumes
Medicago sativa L. and
M. falcata L.. Journal of Experimental Botany, 42, 1565-1574
https://doi.org/10.1093/jxb/42.12.1565
Meng Yingying, Hou Yaling, Wang Hui, Ji Ronghuan, Liu Bin, Wen Jiangqi, Niu Lifang, Lin Hao (2017): Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Plant Cell Reports, 36, 371-374
https://doi.org/10.1007/s00299-016-2069-9
Michno J.M., Wang X., Liu J., Curtin S.J., Kono T.J., Stupar R.M. (2015): CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas 9 enzyme. GM Crops & Food, 6: 243–252.
Mizukami Yuko, kato Mitsuru, Takamizo Tadashi, Kanbe Michio, Inami Susumu, Hattori Kazumi (2006): Interspecific hybrids between Medicago sativa L. and annual Medicago containing Alfafa weevil resistance. Plant Cell, Tissue and Organ Culture, 84, 80-89
https://doi.org/10.1007/s11240-005-9008-8
Nair R. B. (2004): The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 Gene Encodes an Aldehyde Dehydrogenase Involved in Ferulic Acid and Sinapic Acid Biosynthesis. THE PLANT CELL ONLINE, 16, 544-554
https://doi.org/10.1105/tpc.017509
Nicolia A., Ferradini N., Molla G., Biagetti E., Pollegioni L., Veronesi F., Rosellini D. (2014): Expression of an evolved engineered variant of a bacterial glycine oxidase leads to glyphosate resistance in alfalfa. Journal of Biotechnology, 184, 201-208
https://doi.org/10.1016/j.jbiotec.2014.05.020
Nutter F. W., Guan J., Gotlieb A. R., Rhodes L. H., Grau C. R., Sulc R. M. (2002): Quantifying Alfalfa Yield Losses Caused by Foliar Diseases in Iowa, Ohio, Wisconsin, and Vermont. Plant Disease, 86, 269-277
https://doi.org/10.1094/PDIS.2002.86.3.269
Pickering FS, Reis PJ (1993): Effects of abomasal supplements of methionine on wool growth of grazing sheep. Australian Journal of Experimental Agriculture, 33, 7-
https://doi.org/10.1071/EA9930007
Reddy M. S. S., Chen F., Shadle G., Jackson L., Aljoe H., Dixon R. A. (2005): Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proceedings of the National Academy of Sciences, 102, 16573-16578
https://doi.org/10.1073/pnas.0505749102
Ricroch Agnès E., Hénard-Damave Marie-Cécile (2016): Next biotech plants: new traits, crops, developers and technologies for addressing global challenges. Critical Reviews in Biotechnology, , 1-16
https://doi.org/10.3109/07388551.2015.1004521
Robins Joseph G., Bauchan Gary R., Brummer E. Charles (2007): Genetic Mapping Forage Yield, Plant Height, and Regrowth at Multiple Harvests in Tetraploid Alfalfa ( L.). Crop Science, 47, 11-
https://doi.org/10.2135/cropsci2006.07.0447
Rule D. M., Nolting S. P., Prasifka P. L., Storer N. P., Hopkins B. W., Scherder E. F., Siebert M. W., Hendrix W. H. (2014): Efficacy of Pyramided Bt Proteins Cry1F, Cry1A.105, and Cry2Ab2 Expressed in SmartStax Corn Hybrids Against Lepidopteran Insect Pests in the Northern United States. Journal of Economic Entomology, 107, 403-409
https://doi.org/10.1603/EC12448
Samac D.A., Jung H-J.G, Lamb J.F.S. (2006): Development of alfalfa (Medicago sativa L.) as a feedstock for production of ethanol and other bio products. In: Minter S.L. (ed): Alcoholic Fuels. CRC Press: 79–98.
Schaart Jan G., van de Wiel Clemens C.M., Lotz Lambertus A.P., Smulders Marinus J.M. (2016): Opportunities for Products of New Plant Breeding Techniques. Trends in Plant Science, 21, 438-449
https://doi.org/10.1016/j.tplants.2015.11.006
Schuster Mariana, Schweizer Gabriel, Reissmann Stefanie, Kahmann Regine (2016): Genome editing in Ustilago maydis using the CRISPR–Cas system. Fungal Genetics and Biology, 89, 3-9
https://doi.org/10.1016/j.fgb.2015.09.001
Sen Sucharita, Makkar Harinder P. S., Becker Klaus (1998): Alfalfa Saponins and Their Implication in Animal Nutrition. Journal of Agricultural and Food Chemistry, 46, 131-140
https://doi.org/10.1021/jf970389i
Shadle Gail, Chen Fang, Srinivasa Reddy M.S., Jackson Lisa, Nakashima Jin, Dixon Richard A. (2007): Down-regulation of hydroxycinnamoyl CoA: Shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality. Phytochemistry, 68, 1521-1529
https://doi.org/10.1016/j.phytochem.2007.03.022
Shahin Elias A., Spielmann Albert, Sukhapinda Kitisri, Simpson Robert B., Yashar Mayer (1986): Transformation of Cultivated Alfalfa Using Disarmed Agrobacterium tumefaciens1. Crop Science, 26, 1235-
https://doi.org/10.2135/cropsci1986.0011183X002600060033x
Soto-Zarazúa M. Guadalupe, Rodrigues Francisca, Pimentel Filipa B., Bah M. M., Oliveira M. Beatriz P. P. (2016): The isoflavone content of two new alfalfa-derived products for instant beverage preparation. Food & Function, 7, 364-371
https://doi.org/10.1039/C5FO01115A
Strizhov N., Keller M., Mathur J., Koncz-Kalman Z., Bosch D., Prudovsky E., Schell J., Sneh B., Koncz C., Zilberstein A. (1996): A synthetic cryIC gene, encoding a Bacillus thuringiensis -endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proceedings of the National Academy of Sciences, 93, 15012-15017
https://doi.org/10.1073/pnas.93.26.15012
Suárez Ramón, Calderón Cecilia, Iturriaga Gabriel (2009): Enhanced Tolerance to Multiple Abiotic Stresses in Transgenic Alfalfa Accumulating Trehalose. Crop Science, 49, 1791-
https://doi.org/10.2135/cropsci2008.09.0573
Tang Lili, Cai Hua, Ji Wei, Luo Xiao, Wang Zhenyu, Wu Jing, Wang Xuedong, Cui Lin, Wang Yang, Zhu Yanming, Bai Xi (2013): Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiology and Biochemistry, 71, 22-30
https://doi.org/10.1016/j.plaphy.2013.06.024
Teotia Sachin, Singh Deepali, Tang Xiaoqing, Tang Guiliang (2016): Essential RNA-Based Technologies and Their Applications in Plant Functional Genomics. Trends in Biotechnology, 34, 106-123
https://doi.org/10.1016/j.tibtech.2015.12.001
Tesfaye M., Temple S. J., Allan D. L., Vance C. P., Samac D. A. (2001): Overexpression of Malate Dehydrogenase in Transgenic Alfalfa Enhances Organic Acid Synthesis and Confers Tolerance to Aluminum. PLANT PHYSIOLOGY, 127, 1836-1844
https://doi.org/10.1104/pp.010376
Tesfaye Mesfin, Denton Matthew D., Samac Deborah A., Vance Carroll P. (2005): Transgenic alfalfa secretes a fungal endochitinase protein to the rhizosphere. Plant and Soil, 269, 233-243
https://doi.org/10.1007/s11104-004-0520-0
Tesfaye Mesfin, Silverstein Kevin A. T., Bucciarelli Bruna, Samac Deborah A., Vance Carroll P. (2006): The Affymetrix
Medicago GeneChip
® array is applicable for transcript analysis of alfalfa (
Medicago sativa ). Functional Plant Biology, 33, 783-
https://doi.org/10.1071/FP06065
TIVOLI B., BARANGER A., SIVASITHAMPARAM K., BARBETTI M. J. (2006): Annual Medicago: From a Model Crop Challenged by a Spectrum of Necrotrophic Pathogens to a Model Plant to Explore the Nature of Disease Resistance. Annals of Botany, 98, 1117-1128
https://doi.org/10.1093/aob/mcl132
Tohidfar Masoud, Zare Naser, Jouzani Gholamreza Salehi, Eftekhari Seide Maryam (2013): Agrobacterium-mediated transformation of alfalfa (Medicago sativa) using a synthetic cry3a gene to enhance resistance against alfalfa weevil. Plant Cell, Tissue and Organ Culture (PCTOC), 113, 227-235
https://doi.org/10.1007/s11240-012-0262-2
Torregrosa Carine, Cluzet Stéphanie, Fournier Joëlle, Huguet Thierry, Gamas Pascal, Prospéri Jean-Marie, Esquerré-Tugayé Marie-Thérèse, Dumas Bernard, Jacquet Christophe (2004): Cytological, Genetic, and Molecular Analysis to Characterize Compatible and Incompatible Interactions Between
Medicago truncatula and
Colletotrichum trifolii. Molecular Plant-Microbe Interactions, 17, 909-920
https://doi.org/10.1094/MPMI.2004.17.8.909
USDA (2005): Determination of Non-regulated Status for Alfalfa Genetically Engineered for Tolerance to the Herbicide Glyphosate. Federal Register, Vol 70, No. 122, June 27, 2005. Available at http://edocket.access.gpo.gov/2005/pdf/E5-3323.pdf
Vlahova M., Stefanova G., Petkov P., Barbulova A., Petkova D., Kalushkov P., Atanassov A. (2014): Genetic Modification of Alfalfa
(Medicago Sativa L.) for Quality Improvement and Production of Novel Compounds. Biotechnology & Biotechnological Equipment, 19, 56-62
https://doi.org/10.1080/13102818.2005.10817286
Wang Zhi, Li Hongbing, Ke Qingbo, Jeong Jae Cheol, Lee Haeng-Soon, Xu Bingcheng, Deng Xi-Ping, Lim Yong Pyo, Kwak Sang-Soo (2014): Transgenic alfalfa plants expressing AtNDPK2 exhibit increased growth and tolerance to abiotic stresses. Plant Physiology and Biochemistry, 84, 67-77
https://doi.org/10.1016/j.plaphy.2014.08.025
Weeks J Troy, Ye Jingsong, Rommens Caius M (2008): Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Research, 17, 587-597
https://doi.org/10.1007/s11248-007-9132-9
Winicov Ilga (2000): Alfin1 transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta, 210, 416-422
https://doi.org/10.1007/PL00008150
Wu H.S., Shi X., Li J., Wu T.Y., Ren Q.Q., Zhang Z.H., Xiao S.H. (2016): Effects of root exudates of bivalent transgenic cotton (Bt+CpTI) plants on antioxidant proteins and growth of conventional cotton (Xinluhan 33). Journal of Environmental Biology, 37: 13–19.
Yang S., Gao M., Xu C., Gao J., Deshpande S., Lin S., Roe B. A., Zhu H. (2008): Alfalfa benefits from Medicago truncatula: The RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. Proceedings of the National Academy of Sciences, 105, 12164-12169
https://doi.org/10.1073/pnas.0802518105
Zhang H., Gou F., Zhang J., Liu W., Li Q., Mao Y., Botella J.R., Zhu J.K. (2016a): TALEN-mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnology Journal, 14: 186–194.
Zhang J., Duan Z., Zhang D., Zhang J., Di H., Wu F., Wang Y. (2016b): Co-transforming bar and CsLEA enhanced tolerance to drought and salt stress in transgenic alfalfa (Medicago sativa L.). Biochemical and Biophysical Research Communications, 472: 75–82.
Zhang Wan-Jun, Wang Tao (2015): Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation. Plant Science, 234, 110-118
https://doi.org/10.1016/j.plantsci.2014.11.016