Study on fine mapping of QTL for juice yield traits of sweet sorghum (Sorghum dochna)

Zhao B., Xia B., Gao J., Luo F., Chen Q., Lv J., Li Q., Li J., Tong X., Liu H., Sun S., Pei Z. (2022): Study on fine mapping of QTL for juice yield traits of sweet sorghum (Sorghum dochna). Czech J. Genet. Plant Breed., 58: 55−63.

supplementary materialdownload PDF

The stem juice yield is a key factor that influences both the biological and economic production of sweet sorghum [Sorghum dochna (Forssk.) Snowden]. To elucidate upon the genetic basis of the stem juice yield, an F5 population developed from a cross between the low juice yielding Xinliang52 (XL52) and high juice yielding W455 lines, were used in a quantitative trait locus (QTL) analysis. A main effect of the QTL controlling stem juice yield was separated with an SSR marker called Xtxp97, which explained 46.7% of the phenotypic variance. In addition, F5 and F6 populations were constructed with XL52 and W452 as the parents to further verify the QTLs, and a significant correlation was found between the juice yield trait and the Xtxp97 marker. Based on the progeny tests of 29 recombinants, QJy-sbi06 was located in a region of about 21.2 kb on chromosome 6, where a candidate gene encoding an NAC transcription factor (sobic.006G147400) was identified. Combining the different population association analysis and sequencing technology showed that XL52 inserted a 1.8 kb transposon in the NAC to directly interrupt and inactivate the juice yield gene. This study also demonstrated that the colour of the leaf midribs was controlled by a single gene and was significantly positive correlated with juiciness (r = 0.784, P < 0.01). These results could lay the foundation for map-based cloning of QJy-sbi06 and provide genes or QTLs for breeding sorghum lines with a high juice yield and quality.

Almodares A., Hadi M.R. (2009): Production of bioethanol from sweet sorghum: A review. African Journal of Agricultural Research, 4: 772–780.
Alhajturki D., Aljamali M., Kanbar A., Azmah F. (2012): Potential of some sweet sorghum (Sorghum bicolor L.) genotypes under two water regimes for sugar and bio-ethanol production. Sugar Tech, 14: 376–382.
Anami S.E., Zhang L.M., Xia Y., Zhang Y.M., Liu Z.Q., Jing H.C. (2015): Sweet sorghum ideotypes: Genetic improvement of the biofuel syndrome. Food Energy Security, 4: 159–177.
Ali M.L., Rajewski J.F., Baenziger P.S., Gill K.S., Eskridge K.M., Dweikat I. (2008): Assessment of genetic diversity and relationship among a collection of US sweet sorghum germplasm by SSR markers. Molecular Breeding, 21: 497–509.
Bhattramakki D., Dong J.M., Chhabra A.K., Hart G.E. (2000): An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome, 43: 988–998.
Burks P.S., Kaiser C.M., Hawkins E.M., Brown P.J. (2015): Genome-wide association for sugar yield in sweet sorghum. Crop Science, 55: 2138–2148.
Calviño M., Messing J. (2012): Sweet sorghum as a model system for bioenergy crops. Current Opinion in Biotechnology, 23: 323–329.
Doyle J.J., Doyle J.L. (1990): Isolation of plants DNA from fresh tissue. Focus, 12: 13–15.
Evans J., McCormick R.F., Morishige D., Olson S.N., Weers B., Hilley J., Klein P., Rooney W., Mullet J. (2013): Extensive variation in the density and distribution of DNA polymorphism in sorghum genomes. PLoS ONE, 8: 1–13.
Ferriol M., Pico B.M., Nuez F. (2003): Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers. Genetic Resources and Crop Evolution, 50: 227–238.
Han Y., Lv P., Hou S., Li S., Ji G., Ma X., Du R., Liu G. (2015): Combining next generation sequencing with bulked segregant analysis to fine map a stem moisture locus in sorghum (Sorghum bicolor L. Moench). PLoS ONE, 10: 371–385.
Hart G.E., Schertz K.F., Peng Y., Syed N.H. (2001): Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tiller and other morphological characters. Theoretical and Applied Genetics, 103: 1232–1242.
Hilson G.R. (1916): On the inheritance of certain stem characters in sorghum. Indian Journal of Agricultural Sciences, 11: 150–155.
Kanbar A., Flubacher N., Hermuth J., Kosová K., Horn T., Nick P. (2021a): Mining sorghum biodiversity-potential of dual-purpose hybrids for bio-economy. Diversity, 192: 13–15.
Kanbar A., Shakeri E., Alhajturki D., Riemann M., Bunzel M., Morgano M.T., Stapf D., Nick P. (2021b): Sweet versus grain sorghum: Differential sugar transport and accumulation are linked with vascular bundle architecture. Industrial Crops and Products, 167: 31–49.
Kanbar A., Shakeri E., Alhajturki D., Horn T., Emam Y., Tabatabaei S.A., Nick P. (2020): Morphological and molecular characterization of sweet, grain and forage sorghum (Sorghum bicolor L.) genotypes grown under temperate climatic conditions. Plant Biosystems, 154: 49–58.
Kong L., Dong J., Hart G.E. (2000): Characteristics linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theoretical and Applied Genetics, 101: 438–448.
Lekgari A.L. (2010): Genetic mapping of quantitative trait loci associated with bioenergy traits, and the assessment of genetic variability in sweet sorghum (Sorghum bicolor (L.). Moench). [PhD, Thesis.] Nebraska, University of Nebraska-Lincoln.
Li G., Gao M., Yang B., Li G., Gao M., Yang B., Quiros C.F. (2003): Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theoretical and Applied Genetics, 107: 168–180.
Li M.L., Nana Y.M., Luo L., Hirata M., Cai H.W. (2009): In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Molecular Breeding, 24: 41–47.
Mathur S., Umakanth A.V., Tonapi V.A., Sharma R., Sharma M.K. (2017): Sweet sorghum as biofuel feedstock: recent advances and available resources. Biotechnology for Biofuels, 10: 130–146.
McCormick R.F., Truong S.K, Sreedasyam A., Jenkins J., Shu S., Sims D., Kennedy M., Amirebrahimi M., Weers B.D., McKinley B., Mattison A., Morishige D.T., Grimwood J., Schmutz J., Mullet J.E. (2018): The Sorghum bicolor reference genome: Improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. The Plant Journal, 93: 338–354.
Mullet J., Morishige D., McCormick R., Sandra T., Josie H., Brian M., Robert A., Olson S.N., Rooney W. (2014): Energy sorghum – A genetic model for the design of C4  grass bioenergy crops. Journal of Experimental Botany, 65: 3479–3489.
Ooijen J.W., Voorips R.E. (2001): JoinMap® 3.0: Software for the Calculation of Genetic Linkage Maps. Wageningen, Plant Research International.
Ooijen J.W., Boer M.P., Jansen R.C., Maliepaard C. (2002): MapQTL® 4.0: Software for the Calculation of QTL Positions on Genetic Maps. Wageningen, Plant Research International.
Paterson A.H., Bowers J.E., Bruggmann R., Dubchak I., Grimwood J., Gundlach H., Haberer G., Hellsten U., Mitros T., Poliakov A., Schmutz J., Spannagl M., Tang H., Wang X., Wicker T., Bharti A.K., Chapman J., Feltus F.A., Gowik U., Grigoriev I.V., Lyons E., Maher C.A., Martis M., Narechania A., Otillar R.P., Penning B.W., Salamov A.A., Wang Y., Zhang L.F., Carpita N.C., Freeling M., Gingle A.R. (2009): The Sorghum bicolor genome and the diversification of grasses. Nature, 457: 551–559.
Pei Z.Y., Chen Q.L., Gao J.M., Luo F., Sun S.J. (2010): Study on SRAP molecular markers of sugar content in sweet sorghum. In: 10th Chinese Crop Society Annual Conference, Shenyang, Sept 15, 2010: 48.
Rangaswami G., Ayyangar N., Ayyar M., Rao V.P. (1937): Linkage between purple leaf-sheath colour and juiciness of stalk in sorghum. Proceedings of the Indian Academy of Sciences – Section B, 5: 1–3.
Ritter K.B., McIntyre C.L., Godwin I.D., Jordan D.R., Chapman S.C. (2007): An assessment of the genetic relationship between sweet and grain sorghums, within Sorghum bicolor ssp. bicolor (L.) Moench, using AFLP markers. Euphytica, 157: 161–176.
Slewinski T. (2012): Non-structural carbohydrate partitioning in grass stems: A target to increase yield stability, stress tolerance, and biofuel production. Journal of Experimental Botany, 63: 4647–4670.
Srinivas G., Satish K., Madhusudhana R. (2009): Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theoretical and Applied Genetics, 118: 1439–1454.
Swanson A.F., Parker J.H. (1931): Inheritance of smut resistance and juiciness of stalk: In the sorghum cross, Red Amber × Feterita. Journal of Heredity, 22: 51–56.
Teshome A., Baum B.R., Fahrig L., Torrance J.K., Arnason T.J., Lambert J.D. (1997): Sorghum [Sorghum bicolor (L.) Moench] landrace variation and classification in North Shewa and South Welo, Ethiopia. Euphytica, 97: 255–263.
Wang M.L., Zhu C., Barkley N.A., Chen Z., Erpelding J.E., Murray S.C., Tuinstra M.R., Tesso T., Pederson G.A., Yu J. (2009): Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection. Theoretical and Applied Genetics, 120: 13–23.
Wang J., Roe B., Macmil S. (2010): Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics, 11: 261–278.
Wang J., Zhang X., Lin Z.W. (2018): QTL mapping in a maize F2 population using genotyping-by-sequencing and a modified fine-mapping strategy. Plant Science, 276: 171–180.
Xu W.W., Subudhi P.K., Crasta O.R. (2000): Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor (L.) Moench). Genome, 43: 461–469.
Xu B., Ohtani M., Yamaguchi M., Toyooka K., Wakazaki M., Sato M., Kubo M., Nakano Y., Sano R., Hiwatashi Y., Murata T., Kurata T., Yoneda A., Kato K., Hasebe M., Demura T. (2014): Contribution of NAC transcription factors to plant adaptation to land. Science, 343: 1505–1508.
Zhai G.W., Zou G.H., Yan S., Wang H., Shao W.S., Tao Y.Z. (2014): Identification and fine mapping of the gene associated with moisture content of stem in sorghum Sorghum bicolor (L.) Moench. Acta Agriculturae Zhejiangensis, 26: 856–861.
Zhang L.M., Leng C.Y., Luo H., Wu X.Y., Liu Z.Q., Zhang Y.M., Zhang H., Xia Y., Shang L., Liu C.M., Hao D.Y., Zhou Y.H., Chu C.C., Cai H.W., Jing H.C. (2018): Sweet sorghum originated through selection of dry, a plant-specific NAC transcription factor gene. Plant Cell, 30: 2286–2307.
supplementary materialdownload PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti