The role of ZIP proteins in zinc assimilation and distribution in plants: current challenges

https://doi.org/10.17221/54/2018-CJGPBCitation:Lira-Morales J.D., Varela-Bojórquez N., Montoya-Rojo M.B., Sañudo-Barajas J.A. (2019): The role of ZIP proteins in zinc assimilation and distribution in plants: current challenges. Czech J. Genet. Plant Breed., 55: 45-54.
download PDF

Soils with mineral deficiencies lead to nutritional imbalance in crops worldwide. Zinc (Zn) is a micronutrient that is fundamental for plant growth and development, being essential for the proper functioning of a range of enzymes and transcription factors. Zn transporters tightly regulate Zn homeostasis. Plants contain a large number of Zn-responsive genes that are specifically expressed under Zn deficiency to ensure the coordination of assimilatory pathways and meet the physiological requirements. This review brings together a range of studies that have been undertaken to investigate the effects of Zn status on the regulatory mechanisms involved in plant mineral nutrition. The ZIP (ZRT, IRT-like Protein) family is especially implicated in Zn transport and in the maintenance of cellular Zn homeostasis. Regulation of expression in relation to plant tissue, mineral concentration, and species has been determined for several ZIP family members. In the omic era, genomic and proteomic approaches have facilitated a rapid increase in our understanding of the roles of ZIP family members and their regulation, though significant knowledge gaps remain. A comprehensive understanding of ZIP proteins could lead to many potential molecular applications to improve crop management and food quality.

 

References:
Assunção A.G.L., Martins P.D.C., De Folter S., Vooijs R., Schat H., Aarts M.G.M. (2001): Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant, Cell & Environment, 24: 217–226.
 
Assuncao A. G. L., Herrero E., Lin Y.-F., Huettel B., Talukdar S., Smaczniak C., Immink R. G. H., van Eldik M., Fiers M., Schat H., Aarts M. G. M. (2010): Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proceedings of the National Academy of Sciences, 107, 10296-10301 https://doi.org/10.1073/pnas.1004788107
 
Assunção Ana G. L., Persson Daniel P., Husted Søren, Schjørring Jan K., Alexander Ross D., Aarts Mark G. M. (2013): Model of how plants sense zinc deficiency. Metallomics, 5, 1110- https://doi.org/10.1039/c3mt00070b
 
Astudillo Carolina, Fernandez Andrea C., Blair Matthew W., Cichy Karen A. (2013): The Phaseolus vulgaris ZIP gene family: identification, characterization, mapping, and gene expression. Frontiers in Plant Science, 4, - https://doi.org/10.3389/fpls.2013.00286
 
Barberon M., Geldner N. (2014): Radial Transport of Nutrients: The Plant Root as a Polarized Epithelium. PLANT PHYSIOLOGY, 166, 528-537 https://doi.org/10.1104/pp.114.246124
 
Bashir Khurram, Ishimaru Yasuhiro, Nishizawa Naoko K. (2012): Molecular mechanisms of zinc uptake and translocation in rice. Plant and Soil, 361, 189-201 https://doi.org/10.1007/s11104-012-1240-5
 
Becher Martina, Talke Ina N., Krall Leonard, Krämer Ute (2004): Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. The Plant Journal, 37, 251-268 https://doi.org/10.1046/j.1365-313X.2003.01959.x
 
Broadley Martin R., White Philip J., Hammond John P., Zelko Ivan, Lux Alexander (2007): Zinc in plants. New Phytologist, 173, 677-702 https://doi.org/10.1111/j.1469-8137.2007.01996.x
 
Bughio N. (): Cloning an iron-regulated metal transporter from rice. Journal of Experimental Botany, 53, 1677-1682 https://doi.org/10.1093/jxb/erf004
 
Burleigh S.H., Kristensen B.K., Bechmann I.E. (2003): A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Molecular Biology, 52: 1077–1088. https://doi.org/10.1023/A:1025479701246
 
Chen W. R., Feng Y., Chao Y. E. (2008): Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russian Journal of Plant Physiology, 55, 400-409 https://doi.org/10.1134/S1021443708030175
 
Deinlein U., Weber M., Schmidt H., Rensch S., Trampczynska A., Hansen T. H., Husted S., Schjoerring J. K., Talke I. N., Kramer U., Clemens S. (2012): Elevated Nicotianamine Levels in Arabidopsis halleri Roots Play a Key Role in Zinc Hyperaccumulation. THE PLANT CELL ONLINE, 24, 708-723 https://doi.org/10.1105/tpc.111.095000
 
Desbrosses-Fonrouge Anne-Garlonn, Voigt Katrin, Schröder Astrid, Arrivault Stéphanie, Thomine Sébastien, Krämer Ute (2005): Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Letters, 579, 4165-4174 https://doi.org/10.1016/j.febslet.2005.06.046
 
Durmaz Emel, Coruh Ceyda, Dinler Gizem, Grusak Micheal A., Peleg Zvika, Saranga Yashua, Fahima Tzion, Yazici Atilla, Ozturk Levent, Cakmak Ismail, Budak Hikmet (2011): Expression and Cellular Localization of ZIP1 Transporter Under Zinc Deficiency in Wild Emmer Wheat. Plant Molecular Biology Reporter, 29, 582-596 https://doi.org/10.1007/s11105-010-0264-3
 
Eckhardt U., Mas Marques A., Buckhout T.J. (2001): Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Molecular Biology, 45: 437–448.https://doi.org/10.1023/A:1010620012803
 
Eide D., Broderius M., Fett J., Guerinot M. L. (1996): A novel iron-regulated metal transporter from plants identified by functional expression in yeast.. Proceedings of the National Academy of Sciences, 93, 5624-5628 https://doi.org/10.1073/pnas.93.11.5624
 
Gainza-Cortés Felipe, Pérez-Dïaz Ricardo, Pérez-Castro Ramón, Tapia Jaime, Casaretto José A, González Sebastián, Peña-Cortés Hugo, Ruiz-Lara Simón, González Enrique (2012): Characterization of a putative grapevine Zn transporter, VvZIP3, suggests its involvement in early reproductive development in Vitis vinifera L. BMC Plant Biology, 12, 111- https://doi.org/10.1186/1471-2229-12-111
 
Grotz N., Fox T., Connolly E., Park W., Guerinot M. L., Eide D. (1998): Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences, 95, 7220-7224 https://doi.org/10.1073/pnas.95.12.7220
 
Guerinot Mary Lou (2000): The ZIP family of metal transporters. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1465, 190-198 https://doi.org/10.1016/S0005-2736(00)00138-3
 
Hajiboland R., Amirazad F. (2010): Growth, photosynthesis and antioxidant defense systém in Zn-deficient red cabbage plants. Plant, Soil and Environment, 56, 209-217 https://doi.org/10.17221/207/2009-PSE
 
Henriques R., Jásik J., Klein M., Martinoia E., Feller U., Schell J., Pais M.S., Koncz C. (2002): Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Molecular Biology, 50: 587–597. https://doi.org/10.1023/A:1019942200164
 
Ishimaru Yasuhiro, Suzuki Motofumi, Kobayashi Takanori, Takahashi Michiko, Nakanishi Hiromi, Mori Satoshi, Nishizawa Naoko K. (2005): OsZIP4, a novel zinc-regulated zinc transporter in rice. Journal of Experimental Botany, 56, 3207-3214 https://doi.org/10.1093/jxb/eri317
 
Ishimaru Yasuhiro, Suzuki Motofumi, Tsukamoto Takashi, Suzuki Kazumasa, Nakazono Mikio, Kobayashi Takanori, Wada Yasuaki, Watanabe Satoshi, Matsuhashi Shinpei, Takahashi Michiko, Nakanishi Hiromi, Mori Satoshi, Nishizawa Naoko K. (2006): Rice plants take up iron as an Fe 3+ -phytosiderophore and as Fe 2+. The Plant Journal, 45, 335-346 https://doi.org/10.1111/j.1365-313X.2005.02624.x
 
Jain A., Sinilal B., Dhandapani G., Meagher R.B., Sahi S.V. (2013): Effects of deficiency and excess of zinc on morphophysiological traits and spatiotemporal regulation of zinc-responsive genes reveal incidence of cross talk between micro- and macronutrients. Environmental Science & Technology, 47: 5327–5335.
 
Jakoby Marc, Weisshaar Bernd, Dröge-Laser Wolfgang, Vicente-Carbajosa Jesus, Tiedemann Jens, Kroj Thomas, Parcy François (2002): bZIP transcription factors in Arabidopsis. Trends in Plant Science, 7, 106-111 https://doi.org/10.1016/S1360-1385(01)02223-3
 
Kendziorek Maria, Barabasz Anna, Rudzka Justyna, Tracz Katarzyna, Mills Rebecca F., Williams Lorraine E., Antosiewicz Danuta Maria (2014): Approach to engineer tomato by expression of AtHMA4 to enhance Zn in the aerial parts. Journal of Plant Physiology, 171, 1413-1422 https://doi.org/10.1016/j.jplph.2014.04.017
 
Kosesakal T., Unal M. (2009): Role of zinc deficiency in photosynthetic pigments and peroxidase activity of tomato seedlings. IUFS Journal of Biology, 68: 113–120.
 
Lan Hong-Xia, Wang Zhou-Fei, Wang Qi-Hong, Wang Mei-Mei, Bao Yong-Mei, Huang Ji, Zhang Hong-Sheng (2013): Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.). Molecular Biology Reports, 40, 1201-1210 https://doi.org/10.1007/s11033-012-2162-2
 
Lasswell J. (): Cloning and Characterization of IAR1, a Gene Required for Auxin Conjugate Sensitivity in Arabidopsis. THE PLANT CELL ONLINE, 12, 2395-2408 https://doi.org/10.1105/tpc.12.12.2395
 
Lee Sichul, Jeong Hee Joong, Kim Sun A., Lee Joohyun, Guerinot Mary Lou, An Gynheung (2010): OsZIP5 is a plasma membrane zinc transporter in rice. Plant Molecular Biology, 73, 507-517 https://doi.org/10.1007/s11103-010-9637-0
 
Li Suzhen, Zhou Xiaojin, Huang Yaqun, Zhu Liying, Zhang Shaojun, Zhao Yongfeng, Guo Jinjie, Chen Jingtang, Chen Rumei (2013): Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMC Plant Biology, 13, 114- https://doi.org/10.1186/1471-2229-13-114
 
Lin Ya-Fen, Liang Hong-Ming, Yang Shu-Yi, Boch Annegret, Clemens Stephan, Chen Chyi-Chuann, Wu Jing-Fen, Huang Jing-Ling, Yeh Kuo-Chen (2009): Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytologist, 182, 392-404 https://doi.org/10.1111/j.1469-8137.2009.02766.x
 
López-Millán Ana-Flor, Ellis Danielle R., Grusak Michael A. (2004): Identification and Characterization of Several New Members of the ZIP Family of Metal Ion Transporters in Medicago Truncatula. Plant Molecular Biology, 54, 583-596 https://doi.org/10.1023/B:PLAN.0000038271.96019.aa
 
Milner Matthew J., Craft Eric, Yamaji Naoki, Koyama Emi, Ma Jian Feng, Kochian Leon V. (2012): Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation. New Phytologist, 195, 113-123 https://doi.org/10.1111/j.1469-8137.2012.04144.x
 
Milner Matthew J., Seamon Jesse, Craft Eric, Kochian Leon V. (2012): Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of Experimental Botany, 64, 369-381 https://doi.org/10.1093/jxb/ers315
 
Mizuno Takafumi, Usui Koji, Horie Kenji, Nosaka Shiro, Mizuno Naoharu, Obata Hitoshi (2005): Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities. Plant Physiology and Biochemistry, 43, 793-801 https://doi.org/10.1016/j.plaphy.2005.07.006
 
Moreau Sophie, Thomson Rowena M., Kaiser Brent N., Trevaskis Ben, Guerinot Mary Lou, Udvardi Michael K., Puppo Alain, Day David A. (2002): GmZIP1 Encodes a Symbiosis-specific Zinc Transporter in Soybean. Journal of Biological Chemistry, 277, 4738-4746 https://doi.org/10.1074/jbc.M106754200
 
Morel M., Crouzet J., Gravot A., Auroy P., Leonhardt N., Vavasseur A., Richaud P. (2008): AtHMA3, a P1B-ATPase Allowing Cd/Zn/Co/Pb Vacuolar Storage in Arabidopsis. PLANT PHYSIOLOGY, 149, 894-904 https://doi.org/10.1104/pp.108.130294
 
Nishida S., Tsuzuki C., Kato A., Aisu A., Yoshida J., Mizuno T. (2011): AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant & Cell Physiology, 52: 1433–1442.
 
Olsen Lene I., Palmgren Michael G. (2014): Many rivers to cross: the journey of zinc from soil to seed. Frontiers in Plant Science, 5, - https://doi.org/10.3389/fpls.2014.00030
 
Oomen Ronald J. F. J., Wu Jian, Lelièvre Françoise, Blanchet Sandrine, Richaud Pierre, Barbier-Brygoo Hélène, Aarts Mark G. M., Thomine Sébastien (2009): Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytologist, 181, 637-650 https://doi.org/10.1111/j.1469-8137.2008.02694.x
 
Pandey Nalini, Pathak Girish Chandra, Singh Amit Kumar, Sharma Chandra Prakash (2002): Enzymic changes in response to zinc nutrition. Journal of Plant Physiology, 159, 1151-1153 https://doi.org/10.1078/0176-1617-00674
 
Pavithra G. J., Mahesh S., Parvathi M. S., Basavarajeshwari R. M., Nataraja K. N., Shankar A. G. (2016): Comparative growth responses and transcript profiling of zinc transporters in two tomato varieties under different zinc treatments. Indian Journal of Plant Physiology, 21, 208-212 https://doi.org/10.1007/s40502-016-0210-y
 
Pedas P., Ytting C. K., Fuglsang A. T., Jahn T. P., Schjoerring J. K., Husted S. (2008): Manganese Efficiency in Barley: Identification and Characterization of the Metal Ion Transporter HvIRT1. PLANT PHYSIOLOGY, 148, 455-466 https://doi.org/10.1104/pp.108.118851
 
Pedas Pai, Schjoerring Jan K., Husted Søren (2009): Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots. Plant Physiology and Biochemistry, 47, 377-383 https://doi.org/10.1016/j.plaphy.2009.01.006
 
Pence N. S., Larsen P. B., Ebbs S. D., Letham D. L. D., Lasat M. M., Garvin D. F., Eide D., Kochian L. V. (2000): The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proceedings of the National Academy of Sciences, 97, 4956-4960 https://doi.org/10.1073/pnas.97.9.4956
 
Potocki Slawomir, Valensin Daniela, Camponeschi Francesca, Kozlowski Henryk (2013): The extracellular loop of IRT1 ZIP protein — the chosen one for zinc?. Journal of Inorganic Biochemistry, 127, 246-252 https://doi.org/10.1016/j.jinorgbio.2013.05.003
 
Prask J. A., Plocke D. J. (1971): A Role for Zinc in the Structural Integrity of the Cytoplasmic Ribosomes of Euglena gacilis. PLANT PHYSIOLOGY, 48, 150-155 https://doi.org/10.1104/pp.48.2.150
 
Ramesh S. A. (2003): Differential Metal Selectivity and Gene Expression of Two Zinc Transporters from Rice. PLANT PHYSIOLOGY, 133, 126-134 https://doi.org/10.1104/pp.103.026815
 
Sasaki Haruto, Hirose Tatsuro, Watanabe Yoshito, Ohsugi Ryu (1998): Carbonic Anhydrase Activity and CO 2 -Transfer Resistance in Zn-Deficient Rice Leaves. Plant Physiology, 118, 929-934 https://doi.org/10.1104/pp.118.3.929
 
Shanmugam Varanavasiappan, Lo Jing-Chi, Yeh Kuo-Chen (2013): Control of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe. Frontiers in Plant Science, 4, - https://doi.org/10.3389/fpls.2013.00281
 
Siemianowski O., Barabasz A., Weremczuk A., Ruszczyńska A., Bulska E.W.A., Williams L.E., Antosiewicz D.M. (2013): Development of Zn-related necrosis in tobacco is enhanced by expressing AtHMA4 and depends on the apoplastic Zn levels. Plant, Cell & Environment, 36: 1093–1104.
 
Sinclair Scott Aleksander, Krämer Ute (2012): The zinc homeostasis network of land plants. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1823, 1553-1567 https://doi.org/10.1016/j.bbamcr.2012.05.016
 
Sivasubramanian R., Mukhi N., Kaur J. (2015): Arabidopsis thaliana: a model for plant research. In: Bahadur B., Venkat Rajam M., Sahijram L., Krishnamurthy V.K. (eds.): Plant Biology and Biotechnology, Volume II, Plant Genomics and Biotechnology. New Delhi, Springer: 1–26.
 
Song W.-Y., Choi K. S., Kim D. Y., Geisler M., Park J., Vincenzetti V., Schellenberg M., Kim S. H., Lim Y. P., Noh E. W., Lee Y., Martinoia E. (2010): Arabidopsis PCR2 Is a Zinc Exporter Involved in Both Zinc Extrusion and Long-Distance Zinc Transport. THE PLANT CELL ONLINE, 22, 2237-2252 https://doi.org/10.1105/tpc.109.070185
 
Talke I. N. (2006): Zinc-Dependent Global Transcriptional Control, Transcriptional Deregulation, and Higher Gene Copy Number for Genes in Metal Homeostasis of the Hyperaccumulator Arabidopsis halleri. PLANT PHYSIOLOGY, 142, 148-167 https://doi.org/10.1104/pp.105.076232
 
Tiong Jingwen, McDonald Glenn, Genc Yusuf, Shirley Neil, Langridge Peter, Huang Chun Y. (2015): Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley ( Hordeum vulgare ). New Phytologist, 207, 1097-1109 https://doi.org/10.1111/nph.13413
 
Uraguchi Shimpei (2014): Generation of boron-deficiency-tolerant tomato by overexpressing an Arabidopsis thaliana borate transporter AtBOR1. Frontiers in Plant Science, 5, - https://doi.org/10.3389/fpls.2014.00125
 
VATANSEVER Recep, ÖZYİĞİT İbrahim İlker, FİLİZ Ertuğrul (2016): Comparative and phylogenetic analysis of zinc transporter genes/proteins in plants. TURKISH JOURNAL OF BIOLOGY, 40, 600-611 https://doi.org/10.3906/biy-1501-91
 
Verret Frédéric, Gravot Antoine, Auroy Pascaline, Leonhardt Nathalie, David Pascale, Nussaume Laurent, Vavasseur Alain, Richaud Pierre (2004): Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Letters, 576, 306-312 https://doi.org/10.1016/j.febslet.2004.09.023
 
Vert Grégory, Briat Jean-François, Curie Catherine (2001): Arabidopsis IRT2 gene encodes a root-periphery iron transporter. The Plant Journal, 26, 181-189 https://doi.org/10.1046/j.1365-313x.2001.01018.x
 
Wang Miaoying, Xu Qiangyi, Yu Jingjuan, Yuan Ming (2010): The putative Arabidopsis zinc transporter ZTP29 is involved in the response to salt stress. Plant Molecular Biology, 73, 467-479 https://doi.org/10.1007/s11103-010-9633-4
 
Wang Y., Zhang W.-Z., Song L.-F., Zou J.-J., Su Z., Wu W.-H. (2008): Transcriptome Analyses Show Changes in Gene Expression to Accompany Pollen Germination and Tube Growth in Arabidopsis. PLANT PHYSIOLOGY, 148, 1201-1211 https://doi.org/10.1104/pp.108.126375
 
Waters B. M., Chu H.-H., DiDonato R. J., Roberts L. A., Eisley R. B., Lahner B., Salt D. E., Walker E. L. (2006): Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 Reveal Their Roles in Metal Ion Homeostasis and Loading of Metal Ions in Seeds. PLANT PHYSIOLOGY, 141, 1446-1458 https://doi.org/10.1104/pp.106.082586
 
Watts-Williams Stephanie J., Smith F. Andrew, McLaughlin Michael J., Patti Antonio F., Cavagnaro Timothy R. (2015): How important is the mycorrhizal pathway for plant Zn uptake?. Plant and Soil, 390, 157-166 https://doi.org/10.1007/s11104-014-2374-4
 
Watts-Williams Stephanie J., Cavagnaro Timothy R. (2018): Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar. Plant Science, 274, 163-170 https://doi.org/10.1016/j.plantsci.2018.05.015
 
White Jeffrey G, Zasoski Robert J (1999): Mapping soil micronutrients. Field Crops Research, 60, 11-26 https://doi.org/10.1016/S0378-4290(98)00130-0
 
Wintz Henri, Fox Tama, Wu Ying-Ying, Feng Victoria, Chen Wenqiong, Chang Hur-Song, Zhu Tong, Vulpe Chris (2003): Expression Profiles of Arabidopsis thaliana in Mineral Deficiencies Reveal Novel Transporters Involved in Metal Homeostasis. Journal of Biological Chemistry, 278, 47644-47653 https://doi.org/10.1074/jbc.M309338200
 
Wu Jian, Zhao Fang-Jie, Ghandilyan Artak, Logoteta Barbara, Guzman Myriam Olortegui, Schat Henk, Wang Xiaowu, Aarts Mark G. M. (2009): Identification and functional analysis of two ZIP metal transporters of the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 325, 79-95 https://doi.org/10.1007/s11104-009-0151-6
 
Xu Yao-Guang, Wang Bao-Sheng, Yu Jing-Juan, Ao Guang-Ming, Zhao Qian (2010): Cloning and characterisation of ZmZLP1, a gene encoding an endoplasmic reticulum-localised zinc transporter in Zea mays. Functional Plant Biology, 37, 194- https://doi.org/10.1071/FP09045
 
Yan Wen, Chen Guo-Hu, Yang Li-Fei, Gai Jun-Yi, Zhu Yue-Lin (2014): Overexpression of the rice phosphate transporter gene OsPT6 enhances tolerance to low phosphorus stress in vegetable soybean. Scientia Horticulturae, 177, 71-76 https://doi.org/10.1016/j.scienta.2014.07.037
 
Yang Hong, Shu Yan (2015): Cadmium Transporters in the Kidney and Cadmium-Induced Nephrotoxicity. International Journal of Molecular Sciences, 16, 1484-1494 https://doi.org/10.3390/ijms16011484
 
Yang Xia, Huang Ji, Jiang Yan, Zhang Hong-Sheng (2009): Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Molecular Biology Reports, 36, 281-287 https://doi.org/10.1007/s11033-007-9177-0
 
Yang X. S., Wu J., Ziegler T. E., Yang X., Zayed A., Rajani M. S., Zhou D., Basra A. S., Schachtman D. P., Peng M., Armstrong C. L., Caldo R. A., Morrell J. A., Lacy M., Staub J. M. (2011): Gene Expression Biomarkers Provide Sensitive Indicators of in Planta Nitrogen Status in Maize. PLANT PHYSIOLOGY, 157, 1841-1852 https://doi.org/10.1104/pp.111.187898
 
Zhao F.J., Lombi E., McGrath S.P. (2003): Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249: 37–43.https://doi.org/10.1023/A:1022530217289
 
Zhao H., Eide D. (1996): The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation.. Proceedings of the National Academy of Sciences, 93, 2454-2458 https://doi.org/10.1073/pnas.93.6.2454
 
download PDF

© 2019 Czech Academy of Agricultural Sciences