Effect of different factors on regeneration and transformation efficiency of tomato (Lycopersicum esculentum) hybrids

https://doi.org/10.17221/61/2018-CJGPBCitation:Stavridou E., Τzioutziou N.A., Madesis P., Labrou N.E., Nianiou-Obeidat I. (2019): Effect of different factors on regeneration and transformation efficiency of tomato (Lycopersicum esculentum) hybrids. Czech J. Genet. Plant Breed., 55: 120-127.
supplementary materialdownload PDF

The current study aimed to produce rootstock material through micropropagation by developing efficient regeneration and Agrobacterium-mediated transformation protocols for three high quality commercial tomato hybrids (Felina, Siena and Don Jose) to overexpress the GmGSTU4 gene from Glycine max L. previously shown to enhance antioxidant activity. We investigated the plant growth regulators zeatin (Z) and 3-idoleacetic acid (IAA) to determine their best combination for an efficient regeneration protocol for each hybrid. The highest regeneration efficiency was observed in Felina (94.4%) with 1.0 mg/l Z and 0.1 mg/l IAA. In contrast, Don Jose (92.5%) and Siena (83.3%) performed better with 0.5 mg/l Z and 0.1 mg/l IAA. The three hybrids did not differ in micropropagation index, however, Felina showed the highest number of in vitro rooted and in vivo acclimatized plants. Factors such as the age of explant, days in pre- and co-culture and the concentrations of acetosyringone and thiamine on Agrobacterium-mediated genetic transformation were assessed. The transformation indices were 37.04% for the Felina, 13.8% for Siena and 8.33% for Don Jose. We conclude that targeted genotype-specific regeneration protocols will provide an efficient and cost effective genetic transformation system for rootstock production and further incorporation into micropropagation and transgrafting systems.

 

References:
Ahsan N., Lee S.-H., Lee D.-G., Anisuzzaman M., Alam M. F., Yoon H.-S., Choi M. S., Yang J.-K., Lee B.-H. (2007): The effects of wounding type, preculture, infection method and cocultivation temperature on the Agrobacterium-mediated gene transfer in tomatoes. Annals of Applied Biology, 151, 363-372  https://doi.org/10.1111/j.1744-7348.2007.00181.x
 
A. O. (2012): Tissue culture regeneration of three Nigerian cultivars of tomatoes. African Journal of Plant Science, 6, 370-375  https://doi.org/10.5897/AJPS12.054
 
Albacete A., Martinez-Andujar C., Martinez-Perez A., Thompson A. J., Dodd I. C., Perez-Alfocea F. (2015): Unravelling rootstockxscion interactions to improve food security. Journal of Experimental Botany, 66, 2211-2226  https://doi.org/10.1093/jxb/erv027
 
Benekos Kostantinos, Kissoudis Christos, Nianiou-Obeidat Irini, Labrou Nikolaos, Madesis Panagiotis, Kalamaki Mary, Makris Antonis, Tsaftaris Athanasios (2010): Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants. Journal of Biotechnology, 150, 195-201  https://doi.org/10.1016/j.jbiotec.2010.07.011
 
Butaye Katleen M.J., Cammue Bruno P.A., Delauré Stijn L., De Bolle Miguel F.C. (2005): Approaches to Minimize Variation of Transgene Expression in Plants. Molecular Breeding, 16, 79-91  https://doi.org/10.1007/s11032-005-4929-9
 
Cardoza V., Stewart C.N. (2003): Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Reports, 21: 599–604.
 
Choi Jun Young, Seo Young Sam, Kim Su Jin, Kim Woo Taek, Shin Jeong Sheop (2011): Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Reports, 30, 867-877  https://doi.org/10.1007/s00299-010-0989-3
 
Cortina Carolina, Culiáñez-Macià Francisco A. (2004): Tomato Transformation and Transgenic Plant Production. Plant Cell, Tissue and Organ Culture, 76, 269-275  https://doi.org/10.1023/B:TICU.0000009249.14051.77
 
Cruz-Mendívil Abraham, Rivera-López Javier, Germán-Báez Lourdes J., López-Meyer Melina, Hernández-Verdugo Sergio, López-Valenzuela José A., Reyes-Moreno Cuauhtémoc, Valdez-Ortiz Angel (2011): A Simple and Efficient Protocol for Plant Regeneration and Genetic Transformation of Tomato cv. Micro-Tom from Leaf Explants. HortScience, 46, 1655-1660  https://doi.org/10.21273/HORTSCI.46.12.1655
 
Cummins Ian, Dixon David P., Freitag-Pohl Stefanie, Skipsey Mark, Edwards Robert (2011): Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metabolism Reviews, 43, 266-280  https://doi.org/10.3109/03602532.2011.552910
 
Flores Francisco B., Sanchez-Bel Paloma, Estañ María T., Martinez-Rodriguez María M., Moyano Elena, Morales Belén, Campos Juan F., Garcia-Abellán José O., Egea María I., Fernández-Garcia Nieves, Romojaro Félix, Bolarín María C. (2010): The effectiveness of grafting to improve tomato fruit quality. Scientia Horticulturae, 125, 211-217  https://doi.org/10.1016/j.scienta.2010.03.026
 
Francis Kirk E., Spiker Steven (2005): Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. The Plant Journal, 41, 464-477  https://doi.org/10.1111/j.1365-313X.2004.02312.x
 
Fuentes Alejandro D., Ramos Pedro L., Sánchez Yadira, Callard Danay, Ferreira Aleines, Tiel Kenia, Cobas Karen, Rodríguez Raisa, Borroto Carlos, Doreste Vivian, Pujol Merardo (2008): A transformation procedure for recalcitrant tomato by addressing transgenic plant-recovery limiting factors. Biotechnology Journal, 3, 1088-1093  https://doi.org/10.1002/biot.200700187
 
Gao Nan, Shen Weishou, Cao Yu, Su Yanhua, Shi Weiming (2009): Influence of bacterial density during preculture on Agrobacterium-mediated transformation of tomato. Plant Cell, Tissue and Organ Culture (PCTOC), 98, 321-330  https://doi.org/10.1007/s11240-009-9566-2
 
Girhepuje P. V., Shinde G. B. (2011): Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f. sp. lycopersici. Plant Cell, Tissue and Organ Culture (PCTOC), 105, 243-251  https://doi.org/10.1007/s11240-010-9859-5
 
Goldschmidt Eliezer E. (2014): Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science, 5, -  https://doi.org/10.3389/fpls.2014.00727
 
Grigoriadis I., Nianiou-Obeidat I., Tsaftaris A.S. (2015): Shoot regeneration and micrografting of micropropagated hybridtomatoes. The Journal of Horticultural Science and Biotechnology, 80, 183-186  https://doi.org/10.1080/14620316.2005.11511914
 
Guo M., Zhang Y.L., Meng Z.J., Jiang J. (2012): Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes. Genetics and Molecular Research, 11, 661-671  https://doi.org/10.4238/2012.March.16.4
 
Kissoudis Christos, Kalloniati Chrysanthi, Flemetakis Emmanouil, Madesis Panagiotis, Labrou Nikolaos E., Tsaftaris Athanasios, Nianiou-Obeidat Irini (2015): Maintenance of metabolic homeostasis and induction of cytoprotectants and secondary metabolites in alachlor-treated GmGSTU4-overexpressing tobacco plants, as resolved by metabolomics. Plant Biotechnology Reports, 9, 287-296  https://doi.org/10.1007/s11816-015-0364-5
 
Kissoudis Christos, Kalloniati Chrissanthi, Flemetakis Emmanouil, Madesis Panagiotis, Labrou Nikolaos E., Tsaftaris Athanasios, Nianiou-Obeidat Irini (2015): Stress-inducible GmGSTU4 shapes transgenic tobacco plants metabolome towards increased salinity tolerance. Acta Physiologiae Plantarum, 37, -  https://doi.org/10.1007/s11738-015-1852-5
 
Lee Jung-Myung, Kubota C., Tsao S.J., Bie Z., Echevarria P. Hoyos, Morra L., Oda M. (2010): Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127, 93-105  https://doi.org/10.1016/j.scienta.2010.08.003
 
Lin Tao, Zhu Guangtao, Zhang Junhong, Xu Xiangyang, Yu Qinghui, Zheng Zheng, Zhang Zhonghua, Lun Yaoyao, Li Shuai, Wang Xiaoxuan, Huang Zejun, Li Junming, Zhang Chunzhi, Wang Taotao, Zhang Yuyang, Wang Aoxue, Zhang Yancong, Lin Kui, Li Chuanyou, Xiong Guosheng, Xue Yongbiao, Mazzucato Andrea, Causse Mathilde, Fei Zhangjun, Giovannoni James J, Chetelat Roger T, Zamir Dani, Städler Thomas, Li Jingfu, Ye Zhibiao, Du Yongchen, Huang Sanwen (2014): Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46, 1220-1226  https://doi.org/10.1038/ng.3117
 
Livak Kenneth J., Schmittgen Thomas D. (2001): Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25, 402-408  https://doi.org/10.1006/meth.2001.1262
 
Ma J., Liu T., Qiu D. (2015): Optimization of Agrobacterium-mediated transformation conditions for tomato (Solanum lycopersicum L.). Plant OMICS, 8: 529–536.
 
Marrs Kathleen A. (1996): THE FUNCTIONS AND REGULATION OF GLUTATHIONE S-TRANSFERASES IN PLANTS. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 127-158  https://doi.org/10.1146/annurev.arplant.47.1.127
 
Murashige Toshio, Skoog Folke (1962): A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 473-497  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
 
Nianiou-Obeidat Irini, Madesis Panagiotis, Kissoudis Christos, Voulgari Georgia, Chronopoulou Evangelia, Tsaftaris Athanasios, Labrou Nikolaos E. (2017): Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Reports, 36, 791-805  https://doi.org/10.1007/s00299-017-2139-7
 
Patil R.S., Dave M.R., Power J.B., Cocking E.C. (2002): Effective protocol for Agrobacterium-mediated leaf disc transformation in tomato (Lycopersicon esculetum Mill.). Indian Journal of Biotechnology, 1: 339–343.
 
Qiu Dongliang, Diretto Gianfranco, Tavarza Raffaela, Giuliano Giovanni (2007): Improved protocol for Agrobacterium mediated transformation of tomato and production of transgenic plants containing carotenoid biosynthetic gene CsZCD. Scientia Horticulturae, 112, 172-175  https://doi.org/10.1016/j.scienta.2006.12.015
 
Rai Govind Kumar, Rai Neha Prakash, Kumar Sanjeev, Yadav Akhilesh, Rathaur Sushma, Singh Major (2012): Effects of explant age, germination medium, pre-culture parameters, inoculation medium, pH, washing medium, and selection regime on Agrobacterium-mediated transformation of tomato. In Vitro Cellular & Developmental Biology - Plant, 48, 565-578  https://doi.org/10.1007/s11627-012-9442-3
 
Raj S.K., Singh R., Pandey S.K., Singh B.P. (2005): Agrobacterium-mediated tomato transformation and regeneration of transgenic lines expressing tomato leaf curl virus coat protein gene for resistance against TLCV infection. Current Science, 88: 1674–1679.
 
Roxas V.P., Lodhi S.A., Garrett D.K., Mahan J.R., Allen R.D. (2000): Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant & Cell Physiology, 41: 1229–1234.
 
Schwarz Dietmar, Rouphael Youssef, Colla Giuseppe, Venema Jan Henk (2010): Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127, 162-171  https://doi.org/10.1016/j.scienta.2010.09.016
 
Sun Hyeon-Jin, Uchii Sayaka, Watanabe Shin, Ezura Hiroshi (2006): A Highly Efficient Transformation Protocol for Micro-Tom, a Model Cultivar for Tomato Functional Genomics. Plant and Cell Physiology, 47, 426-431  https://doi.org/10.1093/pcp/pci251
 
Velcheva Margarita, Faltin Zehava, Flaishman Moshe, Eshdat Yuval, Perl Avihai (2005): A liquid culture system for Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum L. Mill.). Plant Science, 168, 121-130  https://doi.org/10.1016/j.plantsci.2004.07.037
 
Sree Vidya C.S., Manoharan M., Ranjit Kumar C.T., Savtthri H.S., Lakshmi Sita G. (2000): Agrobacterium-mediated Transformation of Tomato (Lycopersicon esculentum var. Pusa Ruby) with Coat-protein Gene of Physalis Mottle Tymovirus. Journal of Plant Physiology, 156, 106-110  https://doi.org/10.1016/S0176-1617(00)80279-5
 
Wu Y. F., Chen Y., Liang X. M., Wang X. Z. (2006): An experimental assessment of the factors influencing Agrobacterium-mediated transformation in tomato. Russian Journal of Plant Physiology, 53, 252-256  https://doi.org/10.1134/S1021443706020166
 
Yasmeen Abida (2009): An improved protocol for the regeneration and transformation of tomato (cv Rio Grande). Acta Physiologiae Plantarum, 31, 1271-1277  https://doi.org/10.1007/s11738-009-0364-6
 
Zhang Heng, He Xinjian, Zhu Jian-Kang (2014): RNA-directed DNA methylation in plants. RNA Biology, 10, 1593-1596  https://doi.org/10.4161/rna.26312
 
supplementary materialdownload PDF

© 2019 Czech Academy of Agricultural Sciences