A 31-bp indel localised in the 5' untranslated region of OsSUT3 affects the gene expression and rice (Oryza sativa L.) pollen development

https://doi.org/10.17221/66/2021-CJGPBCitation:

Zhang C.L., Li Q.P., Yang H., Wang T., Li J., Wen J.C., Jin S.L., Zhang Z.L., Chen L.J., Li D.D. (2022): A 31-bp indel localised in the 5' untranslated region of OsSUT3 affects the gene expression and rice (Oryza sativa L.) pollen development. Czech J. Genet. Plant Breed., 58: 2128.

supplementary materialdownload PDF

OsSUT genes have been demonstrated to be relevant for diverse biological processes in rice. In this study, we identified the close relationship between a 31-bp insertion in a 5' untranslated region (5' UTR) of the OsSUT3 gene and higher OsSUT3 expression in rice panicles by qRT-PCR and transgenic research. Statistically significant results (P < 0.01) were found for this 31-bp insertions/deletions (indels) in the rice pollen development and other panicle traits, such as the pollen number, pollen fertility, seeding rate, and grain length. An evolution analysis showed that the proportion of the 31-bp insertion significantly increases in rice domestication. Therefore, the 31-bp Indel could be considered as a convenient molecular marker to screen more pollen and better panicle traits in rice breeding.

References:
Adamski N.M., Anastasiou E., Eriksson S., O’Neill C.M., Lenhard M. (2009): Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. Proceedings of the National Academy of the Sciences of the USA, 106: 20115–20120.  https://doi.org/10.1073/pnas.0907024106
 
Aoki N., Hirose T., Scofield G.N., Whitfeld P.R., Furbank R.T. (2003): The sucrose transporter gene family in rice. Plant and Cell Physiology, 44: 223–232.  https://doi.org/10.1093/pcp/pcg030
 
Brenig B., Duan Y.Y., Xing Y.Y., Ding N.S., Huang L.S., Ekkehard S., Christoph E. (2015): Porcine SOX9 gene expression is influenced by an 18 bp Indel in the 5'-untranslated region. PLoS ONE, 10: 139–153.  https://doi.org/10.1371/journal.pone.0139583
 
Chapman M.A., Tang S., Draeger D., Nambeesan S., Shaffer H., Barb J.G., Knapp S.J., Burke J.M. (2012): Genetic analysis of floral symmetry in Van Gogh’s sunflowers reveals independent recruitment of CYCLOIDEA genes in the Asteraceae. PLoS Genetics, 8: e1002628.  https://doi.org/10.1371/journal.pgen.1002628
 
Chen Z.Y., Mashburn L., Merritt J., Federle M.J., Kreth J. (2017): Interference of a speB 5' untranslated region partial deletion with mRNA degradation in Streptococcus pyogenes. Molecular Oral Microbiology, 32: 390–403.  https://doi.org/10.1111/omi.12181
 
Clarke J.D. (2009): Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant DNA isolation. Cold Spring Harbor Protocols, 2009: 1–2. https://doi.org/10.1101/pdb.prot5177
 
Curie C., Cormick S. (1997): A strong inhibitor of gene expression in the 5' untranslated region of the pollen-specific LAT59 gene to tomato. Plant Cell, 9: 2025–2036.
 
Feng Y.M., Liu M., Wang Z., Zhao X.L., Han B., Xing Y.P., Wang M.Y., Yang Y. (2019): A 4-bp deletion in the 5' UTR of TaAFP-B is associated with seed dormancy in common wheat (Triticum aestivum L.). BMC Plant Biology, 19: 349–358.  https://doi.org/10.1186/s12870-019-1950-4
 
Gayathri R., Stephen R. (2021): Differential expression of transport and signalling genes in leaves and panicle regulates the development of pollen-free anthers in TGMS red rice. Cereal Research Communications, 3: 1–9. https://doi.org/10.1007/s42976-020-00124-y
 
Ghouri F., Zhu J.N., Yu H., Wu J.W., Baloch F.S., Liu X.D., Shahid M.Q. (2019): Deciphering global DNA variations and embryo sac fertility in autotetraploid rice line. Turkish Journal of Agriculture and Forestry, 43: 554–568. https://doi.org/10.3906/tar-1901-13
 
Hirose T., Zhang Z.J., Miyao A., Hirochika H., Ohsugi R., Terao T. (2010): Disruption of a gene for rice sucrose transporter, OsSUT1, impairs pollen function but pollen maturation is unaffected. Journal of Experimental Botany, 61: 3639–3646.  https://doi.org/10.1093/jxb/erq175
 
Jefferson R.A., Kavanagh T.A., Bevan M.W. (1987): GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal, 6: 3901–3907.  https://doi.org/10.1002/j.1460-2075.1987.tb02730.x
 
Lande R., Thompson R. (1990): Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics, 124: 743–756.  https://doi.org/10.1093/genetics/124.3.743
 
Li C.L., Meng D., Piñeros M.A., Mao Y.X., Dandekar A.M., Cheng L. (2020): A sugar transporter takes up both hexose and sucrose for sorbitol-modulated in Vitro pollen tube growth in apple. Plant Cell, 32: 449–469.  https://doi.org/10.1105/tpc.19.00638
 
Li D.D., Xu R.C., Lv D., Zhang C.L., Yang H., Zhang J.B., Wen J.C., Li C.Y., Tan X.L. (2020): Identification of the core pollen-specific regulation in the rice OsSUT3 promoter. International Journal of Molecular Sciences, 21: e1909.
 
Li W., Gao Z., Xiao W., Wei Y.M., Liu Y.X., Chen G.Y., Pu Z.E., Chen H.P., Zheng Y.L. (2012): Molecular diversity of restriction enzyme sites, Indels and upstream open reading frames (uORFs) of 5' untransalted regions (UTRs) of Waxy genes in Triticum L. and Aegilops L. species. Genetic Resources and Crop Evolution, 59: 1625–1647.  https://doi.org/10.1007/s10722-011-9787-1
 
Li X.X., Han Y., Yan Y., Messing J., Xu J.H. (2018): Genetic diversity and evolution of reduced sulphur storage during domestication of maize. Plant Journal, 94: 943–955.  https://doi.org/10.1111/tpj.13907
 
Liu H.L., Lin Y., Shen G.W., Gu J.J., Ruan Y., Wu J.X., Zhang Y.J., Li K.R., Long W., Jia L.B., Xia Q.Y. (2019): A novel GATA transcription factor GATAβ4 promotes vitellogenin transcription and egg formation in the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology, 107: 10–18.  https://doi.org/10.1016/j.ibmb.2019.01.004
 
Liu R., Lu J., Zhou M., Zheng S.G., Liu Z.H., Zhang C.H., Du M., Wang M.X., Li Y.F., Wu Y., Zhang L. (2020): Developing stripe rust resistant wheat (Triticum aestivum L.) lines with gene pyramiding strategy and marker-assisted selection. Genetic Resources and Crop Evolution, 67: 381–391.  https://doi.org/10.1007/s10722-019-00868-5
 
Livak K.J., Schmittgen T.D. (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 25: 402–408.  https://doi.org/10.1006/meth.2001.1262
 
Mizuno H., Kasuga S., Kawahigashi H. (2016): The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling. Biotechnology for Biofuels, 9: 127–138.  https://doi.org/10.1186/s13068-016-0546-6
 
Rachmawati D., Hosaka T., Inoue E., Anzai H. (2004): Agrobacterium-mediated transformation of javanica rice cv. Rojolele. Bioscience Biotechnology and Biochemistry, 68: 1193–1200. https://doi.org/10.1271/bbb.68.1193
 
Ramlov K.B., Laursen N.B., Stougaard J., Marcker K.A. (1993): Site-directed mutagenesis of the organ-specific element in the soybean leghemoglobin lbc3 gene promoter. Plant Journal, 4: 577–580.  https://doi.org/10.1046/j.1365-313X.1993.04030577.x
 
Schuster I. (2011): Marker-assisted selection for quantitative traits. Crop Breeding and Applied Biotechnology, 11: 50–55.  https://doi.org/10.1590/S1984-70332011000500008
 
Shin J., Song Y., Jin S., Lee J., Kim D.R., Kim S.C., Cho S., Cho B.K. (2018): Genome-scale analysis of Acetobacterium bakii reveals the cold adaptation of psychrotolerant acetogens by post-transcriptional regulation. RNA, 24: 1839–1855.  https://doi.org/10.1261/rna.068239.118
 
Sun L.L., Sun X.L., Lucas W.J., Li Y.X., Feng S., Ma S., Fan J.W., Gao L.H., Zhang Z.X. (2019): Down-regulation of the sucrose transporter CsSUT1 causes male sterility by altering carbohydrate supply. Plant Physiology, 180: 986–997.  https://doi.org/10.1104/pp.19.00317
 
Torrent M.C., Marzábal P., Ludevid D., Busk P.K. (2010): The bifactorial endosperm box of γ-zein gene: characterisation and function of the Pb3 and GZM cis-acting elements. Plant Journal, 16: 41–52.
 
Verma N., Burma P.K. (2017): Regulation of tapetum: pecific A9 promoter by transcription factors AtMYB80, AtMYB1 and AtMYB4 in Arabidopsis thaliana and Nicotiana tabacum. Plant Journal, 92: 481–494.  https://doi.org/10.1111/tpj.13671
 
Warrier I., Ram-Mohan N., Zhu Z.Y., Hazery A., Echlin H., Rosch J., Meyer M.M., Opijnen T. (2018): The transcriptional landscape of Streptococcus pneumoniae TIGR4 reveals a complex operon architecture and abundant riboregulation critical for growth and virulence. PLoS Pathogens, 14: e1007461. https://doi.org/10.1371/journal.ppat.1007461
 
Ye J., Wang X., Hu T.X., Zhang F.X., Wang B., Li C.X., Yang T.X., Li H.X., Lu Y.E., Giovannoni J.J., Zhang Y.Y., Ye Z.B. (2017): An Indel in the promoter of Al-activated malate transporter 9 selected during tomato domestication determines fruit malate contents and aluminum tolerance. Plant Cell, 29: 2249–2268.  https://doi.org/10.1105/tpc.17.00211
 
Zhao W.H., Gao L., Li Y.H., Wang M.H., Zhang L.D., Zhao L.X. (2020): Yellow-fruited phenotype is caused by 573 bp insertion at 5' UTR of YFT1 allele in yft1 mutant tomato. Plant Science, 300: 110637–110649. https://doi.org/10.1016/j.plantsci.2020.110637
 
supplementary materialdownload PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti