QTL mapping of adult plant resistance to stripe rust in the Fundulea 900 × Thatcher RIL population

https://doi.org/10.17221/71/2020-CJGPBCitation:

Yan X., Zheng H, Zhang P, Weldu G.T., Li Z., Liu D. (2021): QTL mapping of adult plant resistance to stripe rust in the Fundulea 900 × Thatcher RIL population. Czech J. Genet. Plant Breed., 57: 1−8.

supplementary materialdownload PDF

Wheat stripe rust, caused by Puccinia striiformis Westend. f.sp. tritici Eriks (Pst), is one of the most important diseases of bread wheat worldwide. Breeding resistant wheat cultivars is the most economical, effective and environmentally friendly way for controlling wheat stripe rust in China. The Romanian wheat line Fundulea 900 showed good resistance to wheat stripe rust at the adult stage. The present study aimed to map the quantitative trait loci (QTLs) for stripe rust resistance in 176 F2:6 recombinant inbred lines (RIL) derived from the cross of Fundulea 900 × Thatcher. The RIL population was phenotyped for stripe rust (YR) severity at Mianyang in the Sichuan province and Baoding in the Hebei province in the 2016/2017 and 2017/2018 cropping seasons. SSR markers combined with a preferred screened group (PSG) analysis were used to identify the QTLs for stripe rust in the population. Three QTLs for stripe rust resistance were mapped on chromosomes 1AL, 7BL and 7DS, respectively. All three QTLs originated from Fundulea 900 and were detected in all the environments. The QTL on 7DS was provided by the known resistance gene Yr18/Lr34. The two QTLs on chromosomes 1AL and 7BL were explained by 9.2 to 21.5% and 5.1 to 10.1% of the phenotypic variance, respectively and might be new QTLs. The QTLs identified in the study and their closely linked markers can be used for marker-assisted selection (MAS) in wheat breeding programmes.

References:
Bariana H.S., Bansal U.K., Schmidt A., Lehmensiek A., Kaur J., Miah H., Howes N., MCIntyre C.L. (2010): Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica, 176: 251–260. https://doi.org/10.1007/s10681-010-0240-x
 
Botstein D., White R.L., Skolnick M., Davis R.W. (1980): Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32: 314–331.
 
Chen X.M. (2005): Epidemiology and control of stripe rust (Puccinia striiformis f.sp. tritici) on wheat. Canadian Journal of Plant Pathology, 27: 314–337. https://doi.org/10.1080/07060660509507230
 
Dedryver F., Paillard S., Mallard S., Robert O., Trottet M., Nègre S., Verplancke G., Jahier J. (2009): Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘Renan’. Phytopathology, 99: 968–973. https://doi.org/10.1094/PHYTO-99-8-0968
 
Feng J.Y., Wang M.N., See D.R., Chao S.M., Zheng Y.L., Chen X.M. (2018): Characterization of novel gene Yr79 and four additional QTL for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103. Phytopathology, 108: 737–747. https://doi.org/10.1094/PHYTO-11-17-0375-R
 
Gebrewahid T.W., Zhang P.P., Zhou Y., Yan X. C., Xia X.C., He Z.H., Liu D.Q., Li Z.F. (2020): QTL mapping of adult plant resistance to stripe rust and leaf rust in a Fuyu 3/Zhengzhou 5389 wheat population. The Crop Journal, 8: 655–665. https://doi.org/10.1016/j.cj.2019.09.013
 
Grativol C., da Fonseca Lira-Medeiros C., Hemerly A.S., Ferreira P.C.G. (2011): High efficiency and reliability of inter-simple sequence repeats (ISSR) markers for evaluation of genetic diversity in Brazilian cultivated Jatropha curcas L. accessions. Molecular Biology Reports, 38: 4245–4256. https://doi.org/10.1007/s11033-010-0547-7
 
Haile D., Nigussie-Dechassa R., Abdo W., Girma F. (2013): Seeding rate and genotype effects on agronomic performance and grain protein content of durum wheat (Triticum turgidum L. var. durum) in south-eastern Ethiopia. African Journal of Food, Agriculture Nutrition and Development, 13: 7693–7710.
 
Hao Y.F., Liu A.F., Wang Y.H., Feng D.S., Gao J.R., Li X.F., Liu S.B., Wang H.G. (2008): Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theoretical and Applied Genetics, 117: 1205–1212. https://doi.org/10.1007/s00122-008-0827-y
 
Helguera M., Khan I. A., Kolmer J., Lijavetzky D., Zhong-qi I., Dubcovsky J. (2003): PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use. Crop Science, 43: 1839–1847. https://doi.org/10.2135/cropsci2003.1839
 
Herrera-Foessel S.A., Lagudah E.S., Huerta-Espino J., Hayden M.J., Bariana H.S., Singh D., Singh R.P. (2011): New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theoretical and Applied Genetics, 122: 239–249.  https://doi.org/10.1007/s00122-010-1439-x
 
Herrera-Foessel S.A., Singh R.P., Huerta-Espino J., Rosewarne G.M., Periyannan S.K., Viccars L., Calvo-Salazar V., Lan X.C., Lagudah E.S. (2012): Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theoretical and Applied Genetics, 124: 1475–1486. https://doi.org/10.1007/s00122-012-1802-1
 
Johnson R. (1988): Durable resistance to yellow (stripe) rust in wheat and its implications in plant breeding. In: Simmonds N.W., Rajaram S. (eds.): Breeding Strategies for Resistance to the Rusts of Wheat. CIMMYT, Mexico.
 
Leal A.A., Mangolin C.A., do Amaral Júnior A.T., Gonçalves L.S.A., Scapim C.A., Mott A.S., Eloi I.B.O., Cordovés V., Da Silva M.F.P. (2010): Efficiency of RAPD versus SSR markers for determining genetic diversity among popcorn lines. Genetics and Molecular Research: GMR, 9: 9–18. https://doi.org/10.4238/vol9-1gmr692
 
Li H.H., Ye G.Y., Wang J.K. (2007): A modified algorithm for the improvement of composite interval mapping. Genetics, 175: 361–374. https://doi.org/10.1534/genetics.106.066811
 
Li J., Dundas I., Dong C., Li G., Trethowan R., Yang Z., Hoxha S., Zhang P. (2020) Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theoretical and Applied Genetics, 133: 1095–1107.  https://doi.org/10.1007/s00122-020-03534-y
 
Li Y., Niu Y.C., Chen X.M. (2009): Mapping a stripe rust resistance gene YrC591 in wheat variety C591 with SSR and AFLP markers. Theoretical and Applied Genetics, 118: 339–346. https://doi.org/10.1007/s00122-008-0903-3
 
Li Z.F., Zheng T.C., He Z.H., Li G.Q., Xu S.C., Li X.P., Yang G.Y., Singh R.P., Xia X.C. (2006): Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B. Theoretical and Applied Genetics, 112: 1098–1103. https://doi.org/10.1007/s00122-006-0211-8
 
Lillemo M., Asalf B., Singh R.P., Huerta-Espino J., Chen X.M., He Z.H., Bjørnstad Å. (2008): The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theoretical and Applied Genetics, 116: 1155–1166. https://doi.org/10.1007/s00122-008-0743-1
 
Lin F., Chen X.M. (2007): Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theoretical and Applied Genetics, 114: 1277–1287. https://doi.org/10.1007/s00122-007-0518-0
 
Peterson R.F., Campbell A.B., Hannah A.E. (1948): A diagram-matic scale for rust intensity on leaves and stems of cereals. Canadian Journal of Research, 26: 496–500. https://doi.org/10.1139/cjr48c-033
 
Ren Y., He Z.H., Li J., Lillemo M., Wu L., Bai B., Lu Q.X., Zhu H.Z., Zhou G., Du J.Y., Lu Q.L., Xia X.C. (2012a): QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird. Theoretical and Applied Genetics, 125: 1211–1221. https://doi.org/10.1007/s00122-012-1907-6
 
Ren R.S., Wang M.N., Chen X.M., Zhang Z.J. (2012b): Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI183527. Theoretical and Applied Genetics, 125: 847–857. https://doi.org/10.1007/s00122-012-1877-8
 
Rosewarne G.M., Singh R.P., Huerta-Espino J., Herrera-Foessel S.A., Forrest K.L., Hayden M.J., Rebetzke G.J. (2012): Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theoretical and Applied Genetics, 124: 1283–1294. https://doi.org/10.1007/s00122-012-1786-x
 
Rosewarne G.M., Herrera-Foessel S.A., Singh R.P., Huerta-Espino J., Lan C.X., He Z.H. (2013): Quantitative trait loci of stripe rust resistance in wheat. Theoretical and Applied Genetics, 126: 2427–2449. https://doi.org/10.1007/s00122-013-2159-9
 
Sharp P.J., Kreis M., Shewry P.R., Gale M.D. (1988): Location of b-amylase sequence in wheat and its relatives. Theoretical and Applied Genetics, 75: 286–290. https://doi.org/10.1007/BF00303966
 
Singh R.P., Huerta-Espino J., Rajaram S., Barna B., Kiraly Z. (2000): Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathologica et Entomologica Hungarica, 35: 133–139.
 
Singh R.P., Huerta-Espino J., William H.M. (2005): Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish Journal of Agriculture and Forestry, 29: 121–127.
 
Singh R.P., Herrera-Foessel S.A., Huerta-Espino J., Bariana H., Bansal U., McCallum B., Hiebert C., Bhavani S., Singh S., Lan C.X., Lagudah E.S. (2012): Lr34/Yr18/Sr57/Pm38/Bdv1/Ltn1 confers slow rusting, adult plant resistance to Puccinia graminis tritici. In: Chen W.-Q. (ed.): Proc. 13th Cereal Rusts and Powdery Mildews Conf., Beijing, August 28−September 1, 2012.
 
Singh R.P., Herrera-Foessel S.A., Huerta-Espino J., Lan C.X., Basnet B.R., Bhavani S., Lagudah E.S. (2013): Pleiotropic gene Lr46/Yr29/Pm39/Ltn2 confers slow rusting, adult plant resistance to wheat stem rust fungus. In: Proc. Borlaug Global Rust Initiative, 2013, Technical Workshop, New Dehli, Aug 19−22, 2013: 17.1.
 
Suenaga K., Singh R.P., Huerta-Espino J., William H.M. (2003): Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology, 93: 881–890. https://doi.org/10.1094/PHYTO.2003.93.7.881
 
Voorrips R.E. (2002): MapChart: software for the graphical presen-tation of linkage maps and QTLs. Heredity, 93: 77–78. https://doi.org/10.1093/jhered/93.1.77
 
Wan A.M., Chen X.M., He Z.H. (2007): Wheat stripe rust in China. Crop and Pasture Science, 58: 605–619. https://doi.org/10.1071/AR06142
 
Wang M.N., Chen X.M. (2017): Stripe rust resistance. In: Chen X.M., Kang Z.S. (eds.): Stripe Rust. Dordrecht, Springer.
 
Wellings C.R. (2011): Global status of stripe rust: A review of historical and current threats. Euphytica, 179: 129–141. https://doi.org/10.1007/s10681-011-0360-y
 
Westendorp G.D. (1854): Quatrième notice surquelques Cryptogames récemment découvertes en Belgique Bull. Académeie Royale de Belgique Bulletin de la Classe des Sciences, 21: 229–246.
 
Xing L.F., Wang C.F., Xia X.C., He Z.H., Chen W.Q., Liu T.G., Li Z.F., Liu D.Q. (2014): Molecular mapping of leaf rust resistance gene LrFun in Romanian wheat line Fundulea 900. Molecular Breeding, 33: 931–937. https://doi.org/10.1007/s11032-013-0007-x
 
Zhang P.P., Qi A. , Zhou Y., Xia X.C., He Z.H., Li Z.F., Liu D.Q. (2017) Quantitative trait loci mapping of adult-plant resistance to leaf rust in a Fundulea 900בThatcher’wheat cross. Plant Breeding, 136: 1–7. https://doi.org/10.1111/pbr.12434
 
Zhou X.L., Wang M.N., Chen X.M., Lu Y., Kang Z.S., Jing J.X. (2014): Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759. Theoretical and Applied Genetics, 127: 935–945. https://doi.org/10.1007/s00122-014-2269-z
 
supplementary materialdownload PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti