QTL identification for nine seed-related traits in Brassica juncea using a multiparent advanced generation intercross (MAGIC) population


Zhao H., Yan W., Yu K., Wang T., Khattak A.N., Tian E. (2021): QTL identification for nine seed-related traits in Brassica juncea using a multiparent advanced generation intercross (MAGIC) population. Czech J. Genet. Plant Breed., 57: 9−18.

download PDF

Agronomic traits are usually determined by multiple quantitative trait loci (QTLs) that can have pleiotropic effects. A multiparent advanced generation intercross (MAGIC) population is well suited for genetically analysing the effects of multiple QTLs on the traits of interest because it contains more QTL alleles than a biparental population and can overcome the problem of confounding the population structure of the natural germplasm population. We previously developed the B. juncea MAGIC population, derived from eight B. juncea lines with great diversity in agronomic and quality traits. In this study, we show that the B. juncea MAGIC population is also effective for the evaluation of multiple QTLs for complex agronomic traits in B. juncea. A total of twenty-two QTLs for nine seed-related traits were identified, including one QTL for each oil content, seed number per silique and thousand-seed weight; two QTLs for each acid detergent lignin and neutral detergent fibre; three QTLs for each acid detergent fibre and protein content; four QTLs for the seed maturity time; and five QTLs for the white index. Some of these QTLs overlapped. These results should be helpful for further fine mapping, gene cloning, plant breeding and marker-assisted selection (MAS) in B. juncea.

Badani A.G., Snowdon R.J., Wittkop B., Lipsa F.D., Baetzel R., Horn R., De Haro A., Font R., Lühs W., Friedt W. (2006): Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome, 49: 1499–1509. https://doi.org/10.1139/g06-091
Bagheri H., Pino del Carpio D., Hanhart C.J., Bonnema A.B., Keurentjes J.J.B., Aarts M.G.M. (2013): Identification of seed-related QTL in Brassica rapa. Spanish Journal of Agricultural Research, 11: 1085–1093 https://doi.org/10.5424/sjar/2013114-4160
Bandillo N., Raghavan C., Muyco P.A., Sevilla M.A.L., Lobina I.T., Dilla-Ermita C.J., Tung C-W., McCouch S., Thomson M., Mauleon R., Singh R.K., Gregorio G., Redoña E., Leung H. (2013): Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice, 6: 11. https://doi.org/10.1186/1939-8433-6-11
Behnke N., Suprianto E., Möllers C. (2018): A major QTL on chromosome C05 significantly reduces acid detergent lignin (ADL) content and increases seed oil and protein content in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics, 131: 2477–2492.  https://doi.org/10.1007/s00122-018-3167-6
Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y., Buckler E.S. (2007): TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23: 2633–2635.  https://doi.org/10.1093/bioinformatics/btm308
Burton A., Salisbury P., Potts D. (2003): The potential of canola quality Brassica juncea as an oilseed crop for Australia. In: 13th Australian Research Assembly on Brassicas – Conf. Proc., Tamworth, Sept 8–12, 2003: 64–66.
Cavanagh C.R., Chao S., Wang S., et al. (2013): Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proceedings of the National Academy of Sciences of the United States of America, 110: 8057–8062.  https://doi.org/10.1073/pnas.1217133110
Dell’Acqua M., Gatti D.M., Pea G., Cattonaro F., Coppens F., Magris G., Hlaing A.L., Aung H.H., Nelissen H., Baute J., Frascaroli E., Churchill G.A., Inzé D., Morgante M., Pè M.E. (2015): Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biology, 16: 167.  https://doi.org/10.1186/s13059-015-0716-z
Delourme R., Foisset N., Horvais R., Barret P., Champagne G., Cheung W.Y., Landry B.S., Renard M. (1998): Characterisation of the radish introgression carrying the Rfo restorer gene for the Ogu-INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theoretical and Applied Genetics, 97: 129–134. https://doi.org/10.1007/s001220050876
Ding G., Zhao Z., Liao Y., Hu Y., Shi L., Long Y., Xu F. (2012): Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Annals of Botany, 109: 747–759.  https://doi.org/10.1093/aob/mcr323
Dong H., Tan C., Li Y., He Y., Wei S., Cui Y., Chen Y., Wei D., Fu Y., He Y., Wan H., Liu Z., Xiong Q., Lu K., Li J., Qian W. (2018): Genome-wide association study reveals both overlapping and independent genetic loci to control seed weight and silique length in Brassica napus. Frontiers in Plant Science, 9: 921.  https://doi.org/10.3389/fpls.2018.00921
Fang W., Wang Z., Cui R., Li J., Li Y. (2012): Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. The Plant Journal, 70: 929–939. https://doi.org/10.1111/j.1365-313X.2012.04907.x
Fu F.Y., Liu L.Z., Chai Y.R., Chen L., Yang T., Jin M.Y., Ma A.F., Yan X.Y., Zhang Z.S., Li J.N. (2007): Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome, 50: 840–854.  https://doi.org/10.1139/G07-068
Huang B.E., Verbyla K.L., Verbyla A.P., Raghavan C., Singh V.K., Gaur P., Leung H., Varshney R.K., Cavanagh C.R. (2015): MAGIC populations in crops: current status and future prospects. Theoretical and Applied Genetics, 128: 999–1017.  https://doi.org/10.1007/s00122-015-2506-0
Huynh B.L., Ehlers J.D., Huang B.E., et al. (2018): A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.). The Plant Journal, 93: 1129–1142. https://doi.org/10.1111/tpj.13827
Kent W.J. (2002): BLAT‒the BLAST-like alignment tool. Genome Research, 12: 656–664.  https://doi.org/10.1101/gr.229202
Kover P.X., Valdar W., Trakalo J., Scarcelli N., Ehrenreich I.M., Purugganan M.D., Durrant C., Mott R. (2009): A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genetics, 5: e1000551.  https://doi.org/10.1371/journal.pgen.1000551
Li S., Chen L., Zhang L., Li X., Liu Y., Wu Z., Dong F., Wan L., Liu K., Hong D., Yang G. (2015): BnaC9.SMG7b functions as a positive regulator of the number of seeds per silique in Brassica napus by regulating the formation of functional female gametophytes. Plant Physiology, 169: 2744–2760.
Liu J., Osbourn A., Ma P. (2015): MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Molecular Plant, 8: 689–708.  https://doi.org/10.1016/j.molp.2015.03.012
Love H.K., Rakow G., Ranney J.P., Downey R.K. (1991): Breeding improvements towarda canola quality Brassica juncea. In: Proc. 8th Int. Rapeseed Congr., Saskatoon, July 9−11, 1991: 164−169.
Miao L., Chao H., Chen L., Wang H., Zhao W., Li B., Zhang L., Li H., Wang B., Li M. (2019): Stable and novel QTL identification and new insights into the genetic networks affecting seed fiber traits in Brassica napus. Theoretical and Applied Genetics, 132: 1761–1775.  https://doi.org/10.1007/s00122-019-03313-4
Ongom P.O., Ejeta G. (2018): Mating design and genetic structure of a multi-parent advanced generation intercross (MAGIC) population of sorghum (Sorghum bicolor (L.) Moench). G3: Genes|Genomes|Genetics, 8: 331–341. https://doi.org/10.1534/g3.117.300248
Østergaard L., Kempin S., Bies D., Klee H., Yanofsky M. (2006): Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnology Journal, 4: 45–51. https://doi.org/10.1111/j.1467-7652.2005.00156.x
Panjabi P., Jagannath A., Bisht N., Padmaja K., Sharma S., Gupta V., Pradhan A., Pental D. (2008): Comparative mapping of Brassica juncea and Arabidopsis thaliana using intron polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics, 9: 1–19. https://doi.org/10.1186/1471-2164-9-113
Pascual L., Desplat N., Huang B.E., Desgroux A., Bruguier L., Bouchet J.P., Le Q.H., Chauchard B., Verschave P., Causse M. (2015): Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnology Journal, 13: 565–577.  https://doi.org/10.1111/pbi.12282
Roy N.N. (1984): Interspecific transfer of Brassica juncea-type high blackleg resistance to Brassica napus. Euphytica, 33: 295–303. https://doi.org/10.1007/BF00021125
Sallam A., Martsch R. (2015): Association mapping for frost tolerance using multi-parent advanced generation inter-cross (MAGIC) population in faba bean (Vicia faba L.). Genetica, 143: 501–514.  https://doi.org/10.1007/s10709-015-9848-z
Sannemann W., Huang B.E., Mathew B., Léon J. (2015): Multi-parent advanced generation inter-cross in barley: high-resolution quantitative trait locus mapping for flowering time as a proof of concept. Molecular Breeding, 35: 86. https://doi.org/10.1007/s11032-015-0284-7
Shi J., Zhan J., Yang Y., Ye J., Huang S., Li R., Wang X., Liu G., Wang H. (2015): Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Scientific Reports, 5: 14481.  https://doi.org/10.1038/srep14481
Shi L., Song J., Guo C., Wang B., Guan Z., Yang P., Chen X., Zhang Q., King GJ., Wang J., Liu K. (2019): A CACTA-like transposable element in the upstream region of BnaA9.CYP78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. The Plant Journal, 98: 524–539.  https://doi.org/10.1111/tpj.14236
Stein A., Wittkop B., Liu L., Obermeier C., Friedt W., Snowdon R.J. (2013): Dissection of a major QTL for seed colour and fibre content in Brassica napus reveals colocalization with candidate genes for phenylpropanoid biosynthesis and flavonoid deposition. Plant Breeding, 132: 382–389.  https://doi.org/10.1111/pbr.12073
Tian E., Roslinsky V., Cheng B. (2014): Molecular marker-assisted breeding for improved Ogura cms restorer line (RfoRfo) and mapping of the restorer gene (Rfo) in Brassica juncea. Molecular Breeding, 34: 1361–1371. https://doi.org/10.1007/s11032-014-0121-4
Tian E., Li L., Jia S., Lin S. (2016): The variation of fatty acids of Brassica juncea germplasm, correlation analysis and design of specific primer of FAE1 gene for the control of erucic acid. Guihaia, 36: 1445−1452.
Wada T., Oku K., Nagano S., Isobe S., Suzuki H., Mori M., Takata K., Hirata C., Shimomura K., Tsubone M., Katayama T., Hirashima K., Uchimura Y., Ikegami H., Sueyoshi T., Obu K.-I., Hayashida T., Shibato Y. (2017): Development and characterization of a strawberry MAGIC population derived from crosses with six strawberry cultivars. Breeding Science, 67: 370–381.  https://doi.org/10.1270/jsbbs.17009
Wijesundera C., Ceccato C., Fagan P., Shen Z., Burton W., Salisbury P. (2008): Canola quality Indian mustard oil (Brassica juncea) is more stable to oxidation than conventional canola oil (Brassica napus). Journal of the American Oil Chemists’ Society, 85: 693–699.  https://doi.org/10.1007/s11746-008-1253-7
Yadava S.K., Arumugam N., Mukhopadhyay A., Sodhi Y.S., Gupta V., Pental D., Pradhan A.K. (2012): QTL mapping of yield-associated traits in Brassica juncea: meta-analysis and epistatic interactions using two different crosses between east European and Indian gene pool lines. Theoretical and Applied Genetics, 125: 1553–1564.  https://doi.org/10.1007/s00122-012-1934-3
Yan W., Zhao H., Yu K., Wang T., Khattak A.N., Tian E. (2020): Development of a multiparent advanced generation intercross (MAGIC) population for genetic exploitation of complex traits in Brassica juncea: Glucosinolate content as an example. Plant Breeding, 139: 779–789. https://doi.org/10.1111/pbr.12820
Yang J., Liu D., Wang X., Ji C., Cheng F., Li B., et al. (2016): The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nature Genetics, 48: 1225−1232. https://doi.org/10.1038/ng.3657
Yang L., Jin G., Zhao X., Zheng Y., Xu Z., Wu W. (2007): PIP: a database of potential intron polymorphism markers. Bioinformatics, 23: 2174−2177. https://doi.org/10.1093/bioinformatics/btm296
Yao F., Zhang X., Ye X., Li J., Long L., Yu C., Li J., Wang Y., Wu Y., Wang J., Jiang Q., Li W., Ma J., Wei Y., Zheng Y., Chen G. (2019): Characterization of molecular diversity and genome-wide association study of stripe rust resistance at the adult plant stage in Northern Chinese wheat landraces. BMC Genetics, 20: 38.  https://doi.org/10.1186/s12863-019-0736-x
Yin X., Stam P., Kropff M.J., Schapendonk A.H.C.M. (2003): Crop modeling, QTL mapping, and their complementary role in plant breeding. Agronomy Journal, 95: 90–98. https://doi.org/10.2134/agronj2003.0090
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti