Evaluation of diversity and resistance of maize varieties to Fusarium spp. causing ear rot in maize under conditions of natural infection

https://doi.org/10.17221/81/2018-CJGPBCitation:Li Y.G., Jiang D., Xu L.K., Zhang S.Q., Ji P.S., Pan H.Y., Jiang B.W., Shen Z.B. (2019): Evaluation of diversity and resistance of maize varieties to Fusarium spp. causing ear rot in maize under conditions of natural infection. Czech J. Genet. Plant Breed., 55: 131-137.
download PDF

Fusarium ear rot in maize (Zea mays L.) is a serious disease in all maize-growing areas worldwide. A total of 454 fungal strains were isolated from 69 commercial maize hybrids grown in Harbin, China, and comprised Fusarium subglutinans (34.8%), F. proliferatum (31.3%), F. verticillioides (20%), F. graminearum (9.7%), and F. equiseti (4.2%). Among them, a complex of multiple species, F. subglutinans, F. proliferatum, and F. verticillioides are the dominant fungi causing ear rot. Among 59 commercial maize hybrids, eleven hybrids (18.6%) were found to be highly resistant to Fusarium ear rot. Simple sequence repeat (SSR) analysis using six pairs of primers resulted in 24 reproducible bands and cluster analysis separated the maize hybrids into eight groups. There was little genetic variation associated with disease resistance. No correlation was found between genetic diversity and disease resistance.

 

References:
Bedoya C.A., Dreisigacker S., Hearne S., Franco J., Mir C., Prasanna1 B.M., Taba S., Charcosset A., Warburton M.L. (2017): Genetic diversity and population structure of native maize populations in Latin America and the Caribbean. PLoS ONE, 12: e0173488.  https://doi.org/10.1371/journal.pone.0173488
 
Borah S.N., Goswami D., Sarma H.K., Cameotra S.S., Deka S. (2016): Rhamnolipid biosurfactant against Fusarium verticillioides to control stalk and ear rot disease of maize. Frontiers in Microbiology, 7: 1505.  https://doi.org/10.3389/fmicb.2016.01505
 
Carbone I., Kohn L.M. (1999): A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91: 553–556. https://doi.org/10.1080/00275514.1999.12061051
 
Chen J.F., Ding J.Q., Li H.M., Li Z.M., Sun X.D., Li J.J., Wang R.X., Dai X.D., Dong H.F., Song W.B., Chen W., Xia Z.L., Wu J.Y. (2012): Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Molecular Breeding, 30: 1649–1656. https://doi.org/10.1007/s11032-012-9748-1
 
Cho M., Wu E., Kwan J., Yu M., Banh J., Linn W., Anand A., Li Z., TeRonde S., RegisterIII J.C., Jones T.J., Zhao Z.Y. (2014): Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line. Plant Cell Reports, 33: 1767–1777. https://doi.org/10.1007/s00299-014-1656-x
 
Cutts J.L., Sweet G.H., Tegtmeier G.E. (2010): The use of silver stain in sodium dodecyl sulfate polyacrylamide gel electrophoresis of immunoprecipitates obtained by crossed immunoelectrophoresis and liquid precipitation. Electrophoresis, 5: 349–353. https://doi.org/10.1002/elps.1150050605
 
Desjardins A.E., Proctor R.H. (2011): Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Fungal Biology, 115: 38–48. https://doi.org/10.1016/j.funbio.2010.10.002
 
Dorn B., Forrer H.-R., Schürch S., Vogelgsang S. (2009): Fusarium species complex on maize in Switzerland: occurrence, prevalence, impact and mycotoxins in commercial hybrids under natural infection. European Journal of Plant Pathology, 125: 51–61.  https://doi.org/10.1007/s10658-009-9457-8
 
Duan C.X., Qin Z.H., Yang Z.H., Li W.X., Sun S.L., Zhu Z.D., Wang X.M. (2016): Identification of pathogenic Fusarium spp. causing Maize ear rot and potential mycotoxin production in China. Toxins, 8: 186–199. https://doi.org/10.3390/toxins8060186
 
Hartl D.L., Clark A.G. (1997): Principles of Population Genetics. 3rd Ed., Sunderland, Sinauer Associates.
 
Inghelandt D.V., Melchinger A.E., Lebreton C., Stich B. (2010): Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theoretical & Applied Genetics, 120: 1289–1299.
 
Kebebe A.Z., Reid L.M., Zhu X., Wu J., Woldemariam T., Voloaca C., Xiang K. (2015): Relationship between kernel drydown rate and resistance to Gibberella ear rot in maize. Euphytica, 201: 79–88. https://doi.org/10.1007/s10681-014-1185-2
 
Kebede A.Z., Johnston A., Schneiderman D., Bosnich W., Harris L.J. (2018): Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. BMC Genomics, 19: 131–143. https://doi.org/10.1186/s12864-018-4513-4
 
Madania A., Altawil M., Naffaa W., Volker P.H., Hawat M. (2013): Morphological and molecular characterization of Fusarium isolated from maize in Syria. Journal of Phytopathology, 161: 452–458. https://doi.org/10.1111/jph.12085
 
Nelson P.E., Toussoun T.A., Marasas W.F.O. (1983): Fusarium Species, an Illustrated Manual for Identification. Old Main, The Pennsylvania State University Press: 1–193.
 
Nikhou F., Ebrahimi A., Shiri M. (2013): Genetic diversity assessment among maize hybrids using SSR markers. Technical Journal of Engineering and Applied Sciences, 13: 3831–3834.
 
Pascale M., Visconti A., Chelkowski J. (2002): Ear rot susceptibility and mycotoxin contamination of maize hybrids inoculated with Fusarium species under field conditions. European Journal of Plant Pathology, 108: 645–651. https://doi.org/10.1023/A:1020622812246
 
Presello D.A., Iglesiasm J., Botta G., Reid L.M., Lori G.A., Eyhérabide G.H. (2006): Stability of maize resistance to the ear rots caused by Fusarium graminearum and F. verticillioides in Argentinian and Canadian environments. Euphytica, 147: 403–407. https://doi.org/10.1007/s10681-005-9037-8
 
Presello D.A., Botta G., Iglesias J., EyhéRabide G.H. (2008): Effect of disease severity on yield and grain fumonisin concentration of maize hybrids inoculated with Fusarium verticillioides. Crop Protection, 27: 572–576. https://doi.org/10.1016/j.cropro.2007.08.015
 
Reid L.M., Mather D.E., Hamilton R.I., Bolton A.T. (1992): Genotypic differences in the resistance of maize silk to Fusarium graminearum. Canadian Journal of Plant Pathology, 14: 211–214.  https://doi.org/10.1080/07060669209500877
 
Reid L.M., Spaner D., Mather D.E., Bolton A.T., Hamilton R.I. (1993): Resistance of maize hybrids and inbreds following silk inoculation with three isolates of Fusarium graminearum. Plant Disease, 77: 1248–1251. https://doi.org/10.1094/PD-77-1248
 
Saiyad M., Kumar S. (2018): Evaluation of maize genotypes for fodder quality traits and SSR diversity Mohammedtarik. Journal of Plant Biochemistry & Biotechnology, 27: 78–89.
 
Venturini G., Toffolatti S.L., Quaglino F., Casati P. (2017): First report of Fusarium andiyazi causing ear rot on maize in Italy. Plant Disease, 101: 839. https://doi.org/10.1094/PDIS-10-16-1525-PDN
 
Xu J., Liu L., Xu Y., Chen C., Rong T., Ali F., Zhou S., Wu F., Liu Y., Wang J., Cao M., Lu Y. (2013): Development and characterization of simple sequence repeat markers providing genome-wide coverage and high resolution in maize. DNA Research, 20: 497–509. https://doi.org/10.1093/dnares/dst026
 
Yuan G.S., Zhang Z.M., Xiang K., Shen Y., Du J., Lin H.J., Liu L., Zhao M.J., Pan G.T. (2013): Different gene expressions of resistant and susceptible maize inbreds in response to Fusarium verticillioides infection. Plant Molecular Biology Reporter, 31: 925–935. https://doi.org/10.1007/s11105-013-0567-2
 
Zhang X.F., Zou C.J., Cui L.N., Li X., Yang X.R., Luo H.H. (2012): Identification of pathogen causing maize ear rot and inoculation technique in Southwest China. Southwest China Journal of Agricultural Sciences, 25: 2078–2082.
 
Zhou D., Wang X.M., Chen G.K., Sun S., Yang Y., Zhu Z.D., Duan C.X. (2018): The major Fusarium species causing maize ear and kernel rot and their toxigenicity in Chongqing, China. Toxins, 10: 90. https://doi.org/10.3390/toxins10020090
 
download PDF

© 2019 Czech Academy of Agricultural Sciences