Barneveld R.J. van, Cooper K.V. (2002): Nutritional quality of triticale for pigs and poultry. In: Arseniuk E. (ed.): Proc. 5th Int Triticale Symposium, Radzików, June 30–July 5, 2002: 277–282.
Bassu S., Asseng S., Richards R. (2011): Yield benefits of triticale traits for wheat under current and future climates. Field Crops Research, 124: 14–24.
https://doi.org/10.1016/j.fcr.2011.05.020
Beecher B., Bowman J., Martin J., Bettge A., Morris C., Blake T., Giroux M. (2002): Hordoindolines are associated with a major endosperm-texture QTL in barley (Hordeum vulgare). Genome, 45: 584–591.
https://doi.org/10.1139/g02-008
Boros D. (2002): Physico-chemical quality indicators suitable in selection of triticale for high nutritive value. In: Arseniuk E. (ed.): Proc. 5th Int Triticale Symposium, Radzików, June 30–July 5, 2002: 239–244.
Chantret N., Salse J., Sabot F., Bellec A., Laubin B., Dubois I., Dossat C., Sourdille P., Joudrier P., Gautier M.-F., Cattolico L., Beckert M., Aubourg S., Weissenbach J., Caboche M., Leroy P., Bernard M., Chalhoub B. (2008): Contrasted microcolinearity and gene evolution within a homoeologous region of wheat and barley species. Journal of Molecular Evolution, 66: 138–150.
https://doi.org/10.1007/s00239-008-9066-8
Darlington H., Rouster J., Hoffmann L., Halford N., Shewry P., Simpson D. (2001): Identification and molecular characterisation of hordoindolines from barley grain. Plant Molecular Biology, 47: 785–794.
https://doi.org/10.1023/A:1013691530675
Dennett A.L., Trethowan R.M. (2013): Milling efficiency of triticale grain for commercial flour production. Journal of Cereal Science, 57: 527–530.
https://doi.org/10.1016/j.jcs.2013.03.002
Doxastakis G., Zafiriadis I., Irakli M., Marlani H., Tananaki C. (2002): Lupin, soya and triticale addition to wheat flour doughs and their effect on rheological properties. Food Chemistry, 77: 219–227.
https://doi.org/10.1016/S0308-8146(01)00362-4
Faměra O., Hrušková M., Novotná D. (2004): Evaluation of methods for wheat grain hardness determination. Plant Soil and Environment, 50: 489–493.
https://doi.org/10.17221/4063-PSE
Gasparis S., Orczyk W., Nadolska-Orczyk A. (2013): Sina and Sinb genes in triticale do not determine grain hardness contrary to their orthologs Pina and Pinb in wheat. BMC Plant Biology, 13: 190.
https://doi.org/10.1186/1471-2229-13-190
Gautier M.F., Cosson P., Guirao A., Alary R., Joudrier P. (2000): Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraploid Triticum species. Plant Science, 153: 81–91.
https://doi.org/10.1016/S0168-9452(99)00258-7
Gazza L., Taddei F., Conti S., Gazzelloni G., Muccilli V., Janni M., D’ovidio R., Alfieri M. Redaelli R., Pogna N.E. (2015): Biochemical and molecular characterization of Avena indolines and their role in kernel texture. Molecular Genetics and Genomics, 290: 39–54.
https://doi.org/10.1007/s00438-014-0894-5
Giroux M.J., Morris C.F. (1997): A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theoretical and Applied Genetics, 95: 857–864.
https://doi.org/10.1007/s001220050636
Gollan P., Smith K., Bhave M. (2007): Gsp-1 genes comprise a multigene family in wheat that exhibits a unique combination of sequence diversity yet conservation. Journal of Cereal Science, 45: 184–198.
https://doi.org/10.1016/j.jcs.2006.07.011
Greenblatt G., Bettge A., Morris C. (1995): Relationship between endosperm texture and the occurrence of friabilin and bound polar lipids on wheat starch. Cereal Chemistry, 72: 172–176.
Greenwell P., Schofield J. (1986): A starch granule protein associated with endosperm softness in wheat. Cereal Chemistry, 63: 379–380.
Győri Z., Kruppa J., Ungai D., Mile I.G., Sipos P. (2009): Examination of technological and nutritional properties of breads made from triticale flour. In: Ugarčić-Hardi Z., Jukić M., Komlenić D.K., Planinić M., Obad L. (eds.): Proc. 5th Int. Congress Flour-Bread’09. 7th Croatian Congress of Cereal Technologists , Opatija, Oct 21–23, 2009: 503–507.
Hansen H.B., Møller B., Andersen S.B., Jørgensen J.R., Hansen Å. (2004): Grain characteristics, chemical composition, and functional properties of rye (Secale cereale L.) as influenced by genotype and harvest year. Journal of Agricultural and Food Chemistry, 52: 2282–2291.
https://doi.org/10.1021/jf0307191
Hrušková M., Švec I. (2009): Wheat hardness in relation to other quality factors. Czech Journal of Food Sciences, 27: 240–248.
https://doi.org/10.17221/71/2009-CJFS
Jing W., Demcoe A.R., Vogel H.J. (2003): Conformation of a bactericidal domain of puroindoline a: Structure and mechanism of action of a 13-residue antimicrobial peptide. Journal of Bacteriology, 185: 4938–4947.
https://doi.org/10.1128/JB.185.16.4938-4947.2003
Jolly C.J., Glenn G.M., Rahman S. (1996): Gsp-1 genes are linked to the grain hardness locus (Ha) on wheat chromosome 5D. Proceedings of the National Academy of Sciences, 93: 2408–2413.
https://doi.org/10.1073/pnas.93.6.2408
Leon A., Rubiolo A., Anon M. (1996): Use of triticale flours in cookies: quality factors. Cereal Chemistry, 73: 779–784.
Li G., He Z., Peña R.J., Xia X., Lillemo M., Sun Q. (2006): Identification of novel secaloindoline-a and secaloindoline-b alleles in CIMMYT hexaploid triticale lines. Journal of Cereal Science, 43: 378–386.
https://doi.org/10.1016/j.jcs.2005.12.010
Li G., Gao D., La S., Wang H., Li J., He W., Yang E., Yang Z. (2016): Characterization of wheat-Secale africanum chromosome 5R(a) derivatives carrying Secale specific genes for grain hardness. Planta, 243: 1203–1212.
https://doi.org/10.1007/s00425-016-2472-z
Lillemo M., Simeone C.M., Morris C.F. (2002): Analysis of puroindoline a and b sequences from Triticum aestivum cv. 'Penawawa' and related diploid taxa. Euphytica, 126: 321–331.
https://doi.org/10.1023/A:1019908325078
Lukaszewski A.J. (2000): Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Science, 40: 216.
https://doi.org/10.2135/cropsci2000.401216x
Lukaszewski A.J. (2006): Cytogenetically engineered rye chromosomes 1R to improve bread-making quality of hexaploid triticale. Crop Science, 46: 2183.
https://doi.org/10.2135/cropsci2006.03.0135
Massa A.N., Morris C.F. (2006): Molecular evolution of the puroindoline-a, puroindoline-b, and grain softness protein-1 genes in the tribe Triticeae. Journal of Molecular Evolution, 63: 526–536.
https://doi.org/10.1007/s00239-005-0292-z
Massa A.N., Morris C.F., Gill B.S. (2004): Sequence diversity of puroindoline-a, puroindoline-b, and the grain softness protein genes in Aegilops tauschii Coss. Crop Science, 44: 1808.
https://doi.org/10.2135/cropsci2004.1808
Oliete B., Pérez G.T., Gómez M., Ribotta P.D., Moiraghi M., León A.E. (2010): Use of wheat, triticale and rye flours in layer cake production. International Journal of Food and Science Technology, 45: 697–706.
https://doi.org/10.1111/j.1365-2621.2010.02183.x
Oury F.X., Lasme P., Michelet C., Rousset M., Abecassis J., Lullien-Pellerin V. (2015): Relationships between wheat grain physical characteristics studied through near-isogenic lines with distinct puroindoline-b allele. Theoretical and Applied Genetics, 128: 913–929.
https://doi.org/10.1007/s00122-015-2479-z
Peña R.J. (2004): Food uses of triticale. In: Mergoum M., Gómez-Macpherson H. (eds.): Triticale Improvement and Production. Rome, FAO: 37–48.
Ragupathy R., Cloutier S. (2008): Genome organisation and retrotransposon driven molecular evolution of the endosperm Hardness (Ha) locus in Triticum aestivum cv Glenlea. Molecular Genetics and Genomics, 280: 467–481.
https://doi.org/10.1007/s00438-008-0380-z
Ramírez A., Pérez G.T., Ribotta P.D., León A.E. (2003): The occurrence of friabilins in triticale and their relationship with grain hardness and baking quality. Journal of Agricultural and Food Chemistry, 51: 7176–7181.
https://doi.org/10.1021/jf0345853
Simeone M.C., Lafiandra D. (2005): Isolation and characterisation of friabilin genes in rye. Journal of Cereal Science, 41: 115–122.
https://doi.org/10.1016/j.jcs.2004.09.005
Tanchak M.A., Schernthaner J.P., Giband M., Altosaar I. (1998): Tryptophanins: isolation and molecular characterization of oat cDNA clones encoding proteins structurally related to puroindoline and wheat grain softness proteins. Plant Science, 137: 173–184.
https://doi.org/10.1016/S0168-9452(98)00105-8
Tranquilli G., Heaton J., Chicaiza O., Dubcovsky J. (2002): Substitutions and deletions of genes related to grain hardness in wheat and their effect on grain texture. Crop Science, 42: 1812–1817.
https://doi.org/10.2135/cropsci2002.1812
Trojan V., Musilová M., Vyhnánek T., Klejdus B., Hanáček P., Havel L. (2014): Chalcone synthase expression and pigment deposition in wheat with purple and blue colored caryopsis. Journal of Cereal Science, 59:48–55.
https://doi.org/10.1016/j.jcs.2013.10.008
Wall M., Wheeler H., Huebsch M., Smith J., Figeys D., Altosaar I. (2010): The tryptophan-rich domain of puroindoline is directly associated with the starch granule surface as judged by tryptic shaving and mass spectrometry. Journal of Cereal Science, 52: 115–120.
https://doi.org/10.1016/j.jcs.2010.04.002
Williams P.C. (1986): The influence of chromosome number and species on wheat hardness. Cereal Chemistry, 63: 56–58.