Influence of bioproducts and mycorrhizal fungi on the growth and yielding of sweet cherry trees

https://doi.org/10.17221/102/2018-HORTSCICitation:Głuszek S., Derkowska E., Sas Paszt L., Sitarek M., Sumorok B. (2020): Influence of bioproducts and mycorrhizal fungi on the growth and yielding of sweet cherry trees. Hort. Sci. (Prague), 47: 122-129.
download PDF

The experiment assessed the influence of various biofertilizers and biostimulants on the growth characteristics of the root system, its colonization by arbuscular mycorrhizal fungi and the yielding of sweet cherry trees in field conditions. The experiment, conducted in Pomological Orchard of Research Institute of Horticulture located in Skierniewice during 2011–2014, involved the use of a mycorrhizal substrate, organic fertilizers and biostimulant in randomised block design. The control combination consisted of plants fertilized with mineral fertilizers (NPK). The use of the organic fertilizer BF Ekomix in dose 100 g per tree each year in the spring significantly increased the number of root tips in comparison with the control trees. There was also a tendency for the roots to lengthen and increase their surface area under the influence of this biofertilizer. In addition, the inoculation of roots with the mycorrhizal substrate in dose 200 g per tree per year stimulated the colonization of the roots of sweet cherry trees by arbuscular mycorrhizal fungi, which in turn led to improved root growth parameters.

References:
Aka-Kacar Y., Akpinar C., Agar A., Yalcin-Mendi Y., Serce S., Ortas I. (2010): The effect of mycorrhiza in nutrient uptake and biomass of cherry rootstocks during acclimatization. Romanian Biotechnological Letters, 15: 5246–5252.
 
Arsenault J.L., Poulcur S., Messier C., Guay R. (1995): WIN-RHIZO a root-measuring system with a unique overlap correction method. HortScience, 30: 906. https://doi.org/10.21273/HORTSCI.30.4.906D
 
Baum C., El-Tohamy W., Gruda N. (2015): Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Scientia Horticulturae, 187: 131–141. https://doi.org/10.1016/j.scienta.2015.03.002
 
Bharti N., Barnawal D., Shukla S., Tewari S.K., Katiyar R.S., Kalra A. (2016): Integrated application of Exiguobacterium oxidotolerans, Glomus fasciculatum, and vermicompost improves growth, yield and quality of Mentha arvensis in salt-stressed soils. Industrial Crops and Products, 83: 717–728. https://doi.org/10.1016/j.indcrop.2015.12.021
 
Bhattacharjee R., Dey U. (2014): Biofertilizer, a way towards organic agriculture: A review. African Journal of Microbiology Research, 8: 2332–2342. https://doi.org/10.5897/AJMR2013.6374
 
Bona E., Cantamessa S., Massa N., Manassero P., Marsano F., Copetta A., Lingua G., D’Agostino G., Gamalero E., Berta G. (2017): Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza, 27: 1–11. https://doi.org/10.1007/s00572-016-0727-y
 
Bona E., Lingua G., Manassero P., Cantamessa S., Marsano F., Todeschini V., Copetta A., D’Agostino G., Massa N., Avidano L., Gamalero E., Berta G. (2015): AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza, 25: 181–193. https://doi.org/10.1007/s00572-014-0599-y
 
Boyer L.R., Brain P., Xu X.-M., Jeffries P. (2015): Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza, 25: 215–227. https://doi.org/10.1007/s00572-014-0603-6
 
Chen Y.-Y., Hu C.-Y., Xiao J.-X. (2014): Effects of arbuscular mycorrhizal inoculation on the growth, zinc distribution and photosynthesis of two citrus cultivars grown in low-zinc soil. Trees, 28: 1427–1436. https://doi.org/10.1007/s00468-014-1046-6
 
Derkowska E., Sas Paszt L., Dyki B., Sumorok B. (2015): Assessment of mycorrhizal frequency in the roots of fruit plants using different dyes. Advances in Microbiology, 5: 54–64. https://doi.org/10.4236/aim.2015.51006
 
Derkowska E., Sas Paszt L., Głuszek S., Trzciński P., Przybył M., Frąc M. (2017): Effects of treatment of apple trees with various bioproducts on tree growth and occurrence of mycorrhizal fungi in the roots. Acta Scientiarum Pololonum Hortorum Cultus, 16: 75–83. https://doi.org/10.24326/asphc.2017.3.8
 
De Salvador F.R., Di Tommaso G., Piccioni C., Bonofiglio P. (2005): Performance of new and standard cherry rootstocks in different soils and climatic conditions. Acta Horticulturae (ISHS), 667: 191–199. https://doi.org/10.17660/ActaHortic.2005.667.28
 
Flores L., Martínez M.M., Ortega R. (2015): Integrated nutrition program in cherry (Prunus avium L.) ‘Lapins’, in the vi region of Chile, based on soil bioinoculants and organic matter. Acta Horticulturae (ISHS), 1076: 187–192.  https://doi.org/10.17660/ActaHortic.2015.1076.22
 
Franken-Bembenek S. (2005): Gisela 5 rootstock in Germany. Acta Horticulturae (ISHS), 667: 167–172. https://doi.org/10.17660/ActaHortic.2005.667.24
 
French K.E. (2017): Engineering mycorrhizal symbioses to alter plant metabolism and improve crop health. Frontiers in Microbiology, 8: 1403. https://doi.org/10.3389/fmicb.2017.01403
 
Grzyb Z.S., Piotrowski W., Sas Paszt L. (2014): Treatments comparison of mineral and bio fertilizers in the apple and sour cherry organic nursery. Journal of Life Sciences, 8: 889–898.
 
Grzyb Z., Piotrowski W., Sas Paszt L. (2015): The residual effects of various bioproducts and soil conditioners applied in the organic nursery on apple tree performance in the period of two years after transplanting. Journal of Research and Applications in Agricultural Engineering, 60: 109–113.
 
Grzyb Z.S., Sitarek M., Koziński B. (2008): Evaluation of new rootstocks for ‘Vanda’ sweet cherry in Polish climatic conditions. Acta Horticulturae (ISHS), 795: 215–220. https://doi.org/10.17660/ActaHortic.2008.795.29
 
GUS (2017): Rocznik Statystyczny Rzeczypospolitej Polskiej 2017. [Statistical Yearbook of the Republic of Poland 2017].
 
Horii S., Matsumura A., Kuramoto M., Ishii T (2009): Tryptophan dimer produced by water-stressed bahia grass is an attractant for Gigaspora margarita and Glomus caledonium. World Journal of Microbiology and Biotechnology, 25: 1207–1215. https://doi.org/10.1007/s11274-009-0003-9
 
Kapoor R., Sharma D., Bhatnagar A.K. (2008): Arbuscular mycorrhizae in micropropagation systems and their potential applications. Scientia Horticulturae, 116: 227–239. https://doi.org/10.1016/j.scienta.2008.02.002
 
Kelderer M., Thalheimer M., Andreaus O., Topp A., Burger R., Schiatti P. (2008): The mineralization of commercial organic fertilizers at 8°C temperature. In: Boos M. (ed.): Ecofruit – 13th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing: Proceedings to the Conference from 18thFebruary to 20th February 2008 at Weinsberg/Germany: 160–166.
 
Kuwada K., Kuramoto M., Utamura M., Matsushita I., Shibata Y., Ishii T. (2005): Effect of mannitol from Laminaria japonica, other sugar alcohols, and marine alga polysaccharides on in vitro hyphal growth of Gigaspora margarita and root colonization of Trifoliate Orange. Plant and Soil, 276: 279–286. https://doi.org/10.1007/s11104-005-4985-2
 
Lingua G., Bona E., Manassero P., Marsano F., Todeschini V., Cantamessa S., Copetta A., D’Agostino G., Gamalero E., Berta G. (2013): Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria × ananassa var. Selva) in conditions of reduced fertilization. International Journal of Molecular Sciences, 14: 16207–16225. https://doi.org/10.3390/ijms140816207
 
Ljubojević M., Ognjanov V., Barać G., Bošnjaković D., Mlade-
 
nović E., Čukanović J. (2014): Active root surface area as cherry rootstock selection parameter. Voćarstvo, 48: 39–46.
 
Łabanowska B.H., Piotrowski W. (2015): The Spotted Wing Drosophila Drosophila suzukii (Matsumura, 1931) – monitoring and first records in Poland. Journal of Horticultural Research, 23: 49–57. https://doi.org/10.2478/johr-2015-0020
 
Maksoud M.A., Saleh M.A., El-Shamma M.S., Fouad A.A. (2009): The beneficial effect of biofertilizers and antioxidants on olive trees under calcareous soil conditions. World Journal of Agricultural Sciences, 5: 350–352.
 
Mohamed H.A., Barry K.M., Measham P.F. (2016): The role of arbuscular mycorrhizal fungi in establishment and water balance of tomato seedlings and sweet cherry cuttings in low phosphorous soil. Acta Horticulturae (ISHS), 1112: 109–116. https://doi.org/10.17660/ActaHortic.2016.1112.15
 
Mosa W.F.A.E.-G., Sas Paszt L., Frąc M., Trzciński P., Przybył M., Treder W., Klamkowski K. (2016): The influence of biofertilization on the growth, yield and fruit quality of cv.’Topaz’ apple trees. Horticultural Science, 43: 105–111.  https://doi.org/10.17221/154/2015-HORTSCI
 
Mosa W.F.A.E.-G., Sas Paszt L., Frąc M., Trzciński P., Przybył M., Treder W., Klamkowski K. (2017): Biofertilization effect on growth, yield and fruit quality of apple cv Topaz. Indian Journal of Agricultural Research, 51: 25–31.
 
Rozpara E., Badowska-Czubik T., Kowalska J. (2010): Problems of the plum and cherry plants protection in ecological orchard. Journal of Research and Applications in Agricultural Engineering, 55: 73–75. (in Polish with English abstract)
 
Sas Paszt L., Głuszek S., Derkowska E.,Sumorok B., Canfora L. (2015a): The influence of bioproducts on mycorrhizal occurence and diversity in the rhizosphere of strawberry plants under controlled conditions. Advances in Microbiology, 5: 40-53. https://doi.org/10.4236/aim.2015.51005
 
Sas Paszt L., Malusa E., Sumorok B., Canfora L., Derkowska E., Głuszek S. (2015): The influence of bioproducts on mycorrhizal occurence and diversity in the rhizosphere of strawberry plants under controlled conditions. Advances in Microbiology, 5: 40–53.
 
Sas Paszt L., Głuszek S., Derkowska E., Sumorok B., Lisek J., Trzciński P., Lisek A., Frąc M., Sitarek M., Przybył M. (2019): Occurrence of arbuscular mycorrhizal fungi in the roots of two grapevine cultivars in response to bioproducts. South African Journal of Enology and Viticulture 4: 1–4.
 
Sharma R. (2016): Studies on the influence of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria on nutrient uptake and biomass production in cherry (Prunus avium L.). [Ph.D. Thesis.]: 1–189. Available at http://krishikosh.egranth.ac.in/handle/1/67853
 
Singh A.K., Karma B., Kumar Pal A.K. (2015): Effect of vermicompost and biofertilizers on strawberry I: growth, flowering and yield. Annals of Plant and Soil Research 17: 196–199.
 
Sitarek M., Bartosiewicz B. (2012): Influence of five clonal rootstocks on the growth, productivity and fruit quality of ‘Sylvia’ and ‘Karina’ sweet cherry trees. Journal of Fruit and Ornamental Plant Research, 20: 5–10. https://doi.org/10.2478/v10290-012-0010-z
 
Sitarek M., Sas-Paszt L. (2014): Sweet cherry root system structure depends on the rootstock/cultivar combination. Acta Horticulturae (ISHS), 1020: 233–237. https://doi.org/10.17660/ActaHortic.2014.1020.34
 
Smith S.E., Read D.J. (2008): Mycorrhizal Symbiosis. 3rd Ed., Elsevier and Academic, New York, London, Burlington, San Diego.
 
Sobiczewski P., Schollenberger M. (2002): Bakteryjne choroby roślin ogrodniczych. PWRiL, Warszawa: 1–154. (in Polish)
 
Stachowiak A., Świerczyński S., Kolasiński M. (2014): Growth and yielding of sweet cherry trees grafted on new biotypes of Prunus mahaleb (L.). Acta Scientiarum Polonorum. Hortorum Cultus, 13: 131–143.
 
Trouvelot A., Kough J.L., Gianinazzi-Pearson V. (1986): Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methods d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V., Gianinazzi S. (eds): Physiological and Genetical Aspects of Mycorrhizae. INRA, Paris: 217–221.
 
Turan M., Yildirim E., Kitir N., Unek C., Nikerel E., Ozdemir B.S., Güneş A., Mokhtari N.E.P. (2017): Beneficial role of plant growth-promoting bacteria in vegetable production under abiotic stress. In: Zaidi A., Khan M.S. (eds): Microbial Strategies for Vegetable Production. Cham: Springer International Publishing, 151–166.
 
Wally O.D., Critchley A., Hiltz D., Craigie J., Han X., Zaharia L.I., Abrams S., Prithiviraj B. (2013): Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation, 32: 324–339.  https://doi.org/10.1007/s00344-012-9301-9
 
Xiao J.X., Hu C.Y., Chen Y.Y., Yang B., Hua J. (2014): Effects of low magnesium and an arbuscular mycorrhizal fungus on the growth, magnesium distribution and photosynthesis of two citrus cultivars. Scientia Horticulturae, 177: 14–20. https://doi.org/10.1016/j.scienta.2014.07.016
 
Zai X.M., Hao Z.P., Wang H., Ji Y.F., Li Y.P. (2014):. Arbuscular mycorrhizal fungi (AMF) on growth and nutrient uptake of Beach Plum (Prunus maritima) under salt stress. Applied Mechanics and Materials, 618: 268–272. https://doi.org/10.4028/www.scientific.net/AMM.618.268
 
download PDF

© 2020 Czech Academy of Agricultural Sciences