Establishment of an efficient micropropagation system in enhancing rooting efficiency via stem cuttings of apple rootstock M9T337

itation: Shi J.L., Dong Z.D., Song C.H, Xie B.Y., Zheng X.B., Song S.W., Jiao J., Wang M.M., Bai T.H. (2021): Establishment of an efficient micropropagation system in enhancing rooting efficiency via stem cuttings of apple rootstock M9T337. Hort. Sci. (Prague), 48: 63–72.

download PDF

Rootstocks play a vital role in regulating the environmental adaptability and controlling the growth and development of apple trees. M9T337, an excellent apple rootstock widely used in commercial orchards, could confer dwarf tree architectures, early fruiting and suitability for high-density planting. However, the rooting ability of M9T3337 is low when it is vegetatively propagated, and researchers have not yet established an efficient micropropagation system. The present study systematically evaluated the multiplication in adventitious shoots and the in vitro formation of adventitious roots to determine the effects of the culture media and plant growth regulators of M9T337 and a rapid micropropagation system was developed. For the shoot multiplication, the highest multiplication index of 3.93 was obtained on Murashige and Skoog (MS) media supplemented with 2.0 mg/L 6-BA, 0.1 mg/L NAA and 0.3 mg/L GA3 from 12 combinations of 6-BA and NAA. Stronger and taller adventitious shoots were grown on MS supplemented with 1.8 mg/L 6-BA and 0.5 mg/L NAA. The optimal media with 100% rooting was obtained using 1/2 MS supplemented with 0.3 mg/L IBA or MS supplemented with 0.6 mg/L IBA for the rooting induction, resulting in mean rooting numbers of 13.00 and 11.33, respectively. Additionally, the effect on rooting of adding 0.3 mg/L IBA or not on the 1/2 MS and MS media was compared; the results suggested that an appropriate IBA concentration was the key to successful rooting. The rooted plantlets were acclimatised in a shaded greenhouse with an 84% survival rate. The established micropropagation system could be used for the rapid propagation of M9T337 for commercial production.

Amirchakhmaghi N., Hosseinpour B., Yousefzadeh H. (2019): Development of a micropropagation protocol for Malus orientalis using axillary buds. In Vitro Cellular & Developmental Biology-Plant, 55: 625–634.
Amiri E.M., Elahini A. (2011): Optimization of media composition for apple rootstocks. African Journal of Biotechnology, 10: 3594–3601.
Aroonpong P., Chang J. (2015): Micropropagation of a difficult-to-root weeping mulberry (Morus alba var. Shidareguwa): A popular variety for ornamental purposes. Scientia Horticulturae, 194: 320–326.
Bellini C., Pacurar D.I., Perrone I. (2014): Adventitious roots and lateral roots: Similarities and differences. Annual Review of Plant Biology, 65: 639–666.
Caboni E., Lauri P., D’Angeli S. (2000): In vitro plant regeneration from callus of shoot apices in apple shoot culture. Plant Cell Reports, 19: 755–760.
Dai H., Li W., Mao W., Zhang L., Han G., Zhao K., Liu Y., Zhang Z. (2014): Development of an efficient regeneration and Agrobacterium-mediated transformation system in crab apple (Malus micromalus) using cotyledons as explants. In Vitro Cellular & Developmental Biology-Plant, 50: 1–8.
Dobránszki J., Teixeira da Silva J.A. (2010): Micropropagation of apple–A review. Biotechnology Advances, 28: 462–488.
Dobránszki J., Teixeira da Silva J.A. (2011): Adventitious shoot regeneration from leaf thin cell layers in apple. Scientia Horticulturae, 127: 460–463.
Ďurkovič J., Lux A. (2010): with a novel pattern of adventitious rooting in American sweetgum (Liquidambar styraciflua L.). Trees, 24: 491–497.
Fan S., Jian D., Wei X., Chen J., Beeson R.C., Zhou Z., Wang  X. (2017): Micropropagation of blueberry ‘bluejay’ and ‘pink lemonade’ through in vitro shoot culture. Scientia Horticulturae, 226: 277–284.
Gjamovski V., Kiprijanovski M. (2011): Influence of nine dwarfing apple rootstocks on vigour and productivity of apple cultivar ‘Granny Smith’. Scientia Horticulturae, 129: 742–746.
James D.J., Passey A.J., Rugini E. (1988): Factor affecting high frequency plant regeneration from apple leaf tissues culture in vitro. Journal of Plant Physiology, 132: 148–154.
Kaushal N., Modgil M., Thakur M., Sharma D.R. (2005): In vitro clonal multiplication of an apple rootstock by culture of shoot apices and axillary buds. Journal of Experimental Biology, 43: 561–565.
Kermani M.J, Hosseini Z.S., Habashi A.A. (2009): A refined tissue culture media for in vitro proliferation of apple rootstocks. Acta Horticulturae (ISHS), 829: 313–318.
Khamushi M., DehestaniArdakani M., Zarei A., Aliabad K.K. (2019): An efficient protocol for micropropagation of old cypress of Abarkuh (Cupressus sempervirens var. horizontalis [Mill.]) under in vitro condition. Plant Cell Tissue and Organ Culture, 138: 597–601.
Kosina J. (2010): Effect of dwarfing and semi dwarfing apple rootstocks on growth and productivity of selected apple cultivars. Horticultural Science, 37: 121–126.
Lei C., Fan S., Li K., Meng Y., Mao J., Han M., Zhao C., Bao L., Zhang D. (2018): TRAQ-based proteomic analysis reveals potential regulation networks of IBA-induced adventitious root formation in apple. International Journal of Molecular Sciences, 19: 667.
Li B., Feng C., Hu L., Wang M., Chen L., Wang Q. (2014): Shoot regeneration and cryopreservation of shoot tips of apple (Malus) by encapsulation–dehydration. In Vitro Cellular & Developmental Biology-Plant, 50: 357–368.
Lordan J., Fazio G., Francescatto P., Robinson T. (2017): Effects of apple (Malus × domestica) rootstocks on scion performance and hormone concentration. Scientia Horticulturae, 225: 96–105.
Machakova I., Zazimalova E., George E.F. (2008): Plant growth regulators I: introduction; auxins, their analogues and inhibitors. In: George E.F., Hall M. A., Klerk G.J.D. (eds): Plant Propagation by Tissue Culture 3rd E.. Dordrecht: Springer: 501.
Magyar-Tábori K., Dobránszki J., Jámbor-Benczúr E., Lazányi J., Szalai J., Ferenczy A. (2002): Effects of indole-3-butyric acid levels and activated charcoal on rooting of in vitro shoots of apple rootstocks. International Journal of Molecular Sciences, 8: 25–28
Magyar-Tábori K., Dobránszki J., Jaime A., Sean M.T.S., Ildiko´Huda´k.B. (2010): The role of cytokinins in shoot organogenesis in apple. Plant Cell Tissue and Organ Culture, 101: 251–267.
Mao J., Zhang D., Meng Y., Li K., Wang H., Han M. (2019): Inhibition of adventitious root development in apple rootstocks by cytokinin is based on its suppression of adventitious root primordia formation. Physiologia Plantarum, 166: 663–676.
Modgil M., Guleria N., Ghani M., Sharma J.N. (2012): Identifying somaclonal variants of the apple rootstock Malling 7 resistant to white root rot. Scientia Horticulturae, 137: 148–155.
Modgil M., Sharma D.R., Bhardwaj S.V. (1999): Micropropagtion of apple cv. Tydeman’s Early Worcester. Scientia Horticulturae, 81: 179–188.
Murashige T., Skoog F. (1962): A revised media for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473–497.
Nagy J.K., Sule S., Sampaio J.P. (2005): Apple tissue culture contamination by Rhodotorula spp.: Identification and prevention. In Vitro Cellular & Developmental Biology-Plant, 41: 520–524.
Rafael A., Scott N., Ellen G.S. (1989): Relationship of IBA and adventitious rooting in M26 shoots cultured in vitro. Plant Growth Regulation, 8: 263–272.
Sarwar M., Skirvin R.M. (1997): Effect of thidiazuron and 6-benzylaminopurine on adventitious shoot regeneration from leaves of three strains of ‘McIntosh’ apple (Malus × domestica Borkh.) in vitro. Scientia Horticulturae, 68: 95–100.
Sedira M., Welander M., Geier T. (2007): Influence of IBA and aphidicolin on DNA synthesis and adventitious root regeneration from Malus ‘Jork 9’ stem discs. Plant Cell Reports, 26: 539–545.
Sicurani M., Piccioni E., Standardi A. (2001): Micropropagation and preparation of synthetic seed in M.26 apple rootstock I: attempts towards saving labor in the production of adventitious shoot tips suitable for encapsulation. Plant Cell Tissue and Organ Culture, 66: 207–216.
Sotiropoulos T.E. (2008): Performance of the apple (Malus domestica Borkh) cultivar Imperial Double Red Delicious grafted on five rootstocks. Scientia Horticulturae, 35: 7–11.
Teixeira da Silva J.A., Gulyás A., Magyar-Tábori K., Wang  M.R., Wang Q.C., Dobránszki J. (2019): In vitro tissue culture of apple and other Malus species: recent advances and applications. Planta, 249: 975–1006.
Van Hooijdonk B.M., Woolley D.J., Warrington I.J., Tustin D.S. (2010): Initial alteration of scion architecture by dwarfing apple rootstocks may involve shoot–root–shoot signalling by auxin, gibberellin, and cytokinin. Journal of Horticultural Science & Biotechnology, 85: 59–65.
Wang M.R., Li B.Q., Feng C.H., Wang Q.C. (2016): Culture of shoot tips from adventitious shoots can eradicate apple stem pitting virus but fails in apple grooving virus. Plant Cell Tissue and Organ Culture, 125: 283–291.
Wang Y., Li W., Xu X., Qiu C., Wu T., Wei Q., Ma F., Han Z. (2019): Progress of apple rootstock breeding and its use. Horticultural Plant Journal, 5: 183–191.
Ward S.P., Leyser O. (2004): Shoot branching. Current Opinion in Plant Biology, 7: 73–78.
Yang H., Klopotek Y., Hajirezaei M.R., Zerche S., Franken P., Druege U. (2019): Role of auxin homeostasis and response in nitrogen limitation and dark stimulation of adventitious root formation in petunia cuttings. Annals of Botany, 124: 1053–1066.
Yepes L.M., Aldwinckle H.S. (1994): Factors that affect leaf regeneration efficiency in apple, and effect of antibiotics in morphogenesis. Plant Cell Tissue and Organ Culture, 37: 257–269.
Zhang X., Qin Y., Liang D., Zou Y., Ma F. (2014): Enhancement of in vitro shoot regeneration from leaf explants of apple rootstock G.41. In Vitro Cellular & Developmental Biology-Plant, 50: 263–270.
Zimmerman R.H., Bhardwaj S.V, Fordham I.M. (1995): Use of starch-gelled media for tissue culture of some fruit crops. Plant Cell Tissue and Organ Culture, 43: 207–213.
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti