Influence of various biofertilizers on root growth dynamics in sweet cherry (Prunus avium L.) cv. ‘Vanda’

https://doi.org/10.17221/119/2020-HORTSCICitation:

Głuszek S., Sas-Paszt L., Derkowska E., Sumorok B., Sitarek M. (2021): Influence of various biofertilizers on root growth dynamics in sweet cherry (Prunus avium L.) cv. ‘Vanda’. Hort. Sci. (Prague), 48: 105–116.

download PDF

The experiment was established in the Pomological Orchard of The National Institute of Horticultural Research in Skierniewice in a system of randomized blocks. The aim of the experiment was to investigate the impact of innovative organic fertilizers: BioIlsa, BioFeed Ecomix, biostimulator Ausma and mycorrhizal inoculum Mykoflor on the fine roots growth characteristics of ‘Vanda’ sweet cherry trees in comparison with NPK mineral fertilization. The experiment involved five combinations, in three repetitions of three trees each, treated with tested preparations. The study assessed the influence of fertilization on the lifespan of the roots, the depth of their formation, their diameter and survivorship using minirhizotron camera. The highest numbers of roots were found in the treatment where the plants were fertilized with NPK and the lowest following the use of the biofertilizer BioFeed Ecomix. The longest lifespan was shown by the roots of the trees treated with BioFeed Ecomix – 347 days, and the shortest – by those fertilized with the Ausma – 225 days. The lifespan of the roots increased with their diameter. The roots that lived the longest had a diameter in the range from 0.9 to 1.0 mm – 568 days, and the shortest-living were the roots with a diameter smaller than 0.3 mm – 238 days. The roots that formed in late autumn and winter had the shortest median lifespan of 159 days, while the roots formed in the spring where characterized by the longest lifespan of 300 days. The lifespan of the roots formed close to the soil surface was the shortest – 225 days, while that of the roots formed at a depth of 10 to 20 cm was the longest – 326 days. Biological origin, organic nitrogen rich fertilizers positively influence on fine roots lifespan and longevity. Mineral fertilization increases number of new formed roots.

References:
Abrisqueta J.M., Mounzer O., Álvarez S., Conejero W., García-Orellana Y., Tapia L.M., Vera J., Abrisqueta I. Ruiz-Sánchez M.C. (2008): Root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation. Agricultural Water Management, 95: 959–967. https://doi.org/10.1016/j.agwat.2008.03.003
 
Aka-Kaçar Y., Akpinar Ç., Agar A., Yalçin-Mendi Y., Serçe S., Ortaş İ. (2010): The effect of mycorrhiza in nutrient uptake and biomass of cherry rootstocks during acclimatization. Romanian Biotechnological Letters, 15: 5246–5252.
 
Anderson L.J., Comas L.H., Lakso A.N., Eissenstat D.M. (2003): Multiple risk factors in root survivorship: a 4-year study in Concord grape. New Phytologist, 158: 489–501. https://doi.org/10.1046/j.1469-8137.2003.00757.x
 
Artacho P., Bonomelli C. (2016): Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees. Tree Physiology, 36: 601–617. https://doi.org/10.1093/treephys/tpw002
 
Atucha A., Merwin I.A., Brown M.G., Gardiazabal F., Mena F., Adriazola C., Goebel M., Bauerle T. (2013): Root distribution and demography in an avocado (Persea americana) orchard under groundcover management systems. Functional Plant Biology, 40: 507–515. https://doi.org/10.1071/FP12317
 
Baddeley J., Watson C. (2005): Influences of root diameter, tree age, soil depth and season on fine root survivorship in Prunus avium. Plant and Soil, 276: 15–22. https://doi.org/10.1007/s11104-005-0263-6
 
Baldi E., Toselli M. (2013): Root growth and survivorship in cow manure and compost amended soils. Plant, Soil and Environment, 59: 221–226.  https://doi.org/10.17221/857/2012-PSE
 
Baldi E., Toselli M., Eissenstat D.M., Marangoni B. (2010): Organic fertilization leads to increased peach root production and lifespan. Tree Physiology, 30: 1373–1382. https://doi.org/10.1093/treephys/tpq078
 
Basile B., Bryla D.R., Salsman M.L., Marsal J., Cirillo C., Johnson R.S., DeJong T.M. (2007): Growth patterns and morphology of fine roots of size-controlling and invigorating peach rootstocks. Tree Physiology, 27: 231–241. https://doi.org/10.1093/treephys/27.2.231
 
Battacharyya D., Babgohari M.Z., Rathor P., Prithiviraj B. (2015): Seaweed extracts as biostimulants in horticulture. Biostimulants in Horticulture, 196: 39–48. https://doi.org/10.1016/j.scienta.2015.09.012
 
Baum C., El-Tohamy W., Gruda N. (2015): Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Scientia Horticulturae, 187: 131–141. https://doi.org/10.1016/j.scienta.2015.03.002
 
Bevington K.B., Castle W.S. (1985): Annual root growth pattern of young citrus trees in relation to shoot growth, soil temperature, and soil water content. Journal of the American Society for Horticultural Science, 110: 840–845.
 
Blažková J., Drahošová H., Hlušičková I. (2010): Tree vigour, cropping, and phenology of sweet cherries in two systems of tree training on dwarf rootstocks. Horticultural Science. (Prague), 37: 127–138. https://doi.org/10.17221/60/2010-HORTSCI
 
Bonomelli C., Bonilla C., Acuña E., Artacho P. (2012): Seasonal pattern of root growth in relation to shoot phenology and soil temperature in sweet cherry trees (Prunus avium): A preliminary study in central Chile. Ciencia e Investigación Agraria, 39: 127–136. https://doi.org/10.4067/S0718-16202012000100010
 
Cavagnaro T.R., Bender S.F., Asghari H.R., van der Heijden M.G.A. (2015): The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends in Plant Science, 20: 283–290. https://doi.org/10.1016/j.tplants.2015.03.004
 
Ceccon C., Tagliavini M., Schmitt A.O., Eissenstat D.M. (2016): Untangling the effects of root age and tissue nitrogen on root respiration in Populus tremuloides at different nitrogen supply. Tree Physiology, 36: 618–627. https://doi.org/10.1093/treephys/tpw022
 
Chaparro J.M., Badri D.V., Bakker M.G., Sugiyama A., Manter D.K., Vivanco J.M. (2013): Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE 8: e55731.
 
Colla G., Nardi S., Cardarelli M., Ertani A., Lucini L., Canaguier R., Rouphael Y. (2015): Protein hydrolysates as biostimulants in horticulture. Biostimulants in Horticulture, 196: 28–38. https://doi.org/10.1016/j.scienta.2015.08.037
 
du Jardin P. (2015): Plant biostimulants: Definition, concept, main categories and regulation. Biostimulants in Horticulture, 196: 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
 
Ferguson J.C., Smucker A.J.M. (1989): Modifications of the minirhizotron video camera system for measuring spatial and temporal root dynamics. Soil Science Society of America Journal, 53: 1601–1605. https://doi.org/10.2136/sssaj1989.03615995005300050054x
 
Filipczak J., Żurawicz E., Paszt L.S. (2016): Influence of selected biostimulants on the growth and yielding of ‘Elkat’ strawberry plants. Zeszyty Naukowe Instytutu Ogrodnictwa, 24: 43–58. (in Polish)
 
Flore J.A., Layne D.R. (1999): Photoassimilate production and distribution in cherry. HortScience, 34: 1015–1019. https://doi.org/10.21273/HORTSCI.34.6.1015
 
Flores L., Martínez M.M., Ortega R. (2015): Integrated nutrition program in cherry (Prunus avium L.) ‘Lapins’’, in the VI region of Chile, based on soil bioinoculants and organic matter. Acta Horticulturae (ISHS), 1076: 187–192. https://doi.org/10.17660/ActaHortic.2015.1076.22
 
Franken-Bembenek S. (2005): Gisela® 5 Rootstock in Germany. Acta Horticulturae (ISHS), 667: 167–172. https://doi.org/10.17660/ActaHortic.2005.667.24
 
Głowacka A., Rozpara E. (2015): Growth, yielding and fruit quality of three sweet cherry cultivars under organic orchard conditions. Journal of Research and Applications in Agricultural Engineering, 60: 73–76.
 
Głuszek S., Sas Paszt L., Sumorok B., Derkowska E. (2008): Effect of mycorrhiza on growth and yield of horticultural plants. Postępy Nauk Rolniczych, 6: 11–22. (in Polish)
 
Głuszek S., Sas Paszt L., Sumorok B., Derkowska E., Kozera R. (2013): Application of the minirhizotron technique to studying the roots of fruit plants. Advances in Science and Technology – Research Journal, 7: 45–53. https://doi.org/10.5604/20804075.1049605
 
Głuszek S., Sas Paszt L., Jadczuk-Tobjasz E., Sumorok B. (2015): Fine root lifespan dynamics in four sour cherry (Prunus cerasus) cultivars grown in Central Poland using the minirhizotron technique. Dendrobiology, 73: 117–123. https://doi.org/10.12657/denbio.073.012
 
Grzyb Z.S., Sas Paszt L., Piotrowski W., Malusa E. (2015): The influence of mycorrhizal fungi on the growth of apple and sour cherry maidens fertilized with different bioproducts in the organic nursery. Journal of Life Sciences, 9: 221–228.
 
Grzyb Z.S., Sitarek M., Koziński B (2008): Evaluation of new rootstocks for ‘Vanda’ sweet cherry in Polish climatic conditions. Acta Horticulturae (ISHS), 795: 215–220. https://doi.org/10.17660/ActaHortic.2008.795.29
 
GUS (2018): Production of agricultural and horticultural crops in 2017. Warsaw, 2018.
 
Joslin J.D., Wolfe M.H. (1999): Disturbances during minirhizotron installation can affect root observation data. Soil Science Society of America Journal, 63: 218–221. https://doi.org/10.2136/sssaj1999.03615995006300010031x
 
Kaspar T.C., Bland W.L. (1992): Soil temperature and root growth. Soil Science, 154: 290–299. https://doi.org/10.1097/00010694-199210000-00005
 
King J.S., Albaugh T.J., Allen H.L., Buford M., Strain B.R., Dougherty P. (2002): Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 154: 389–398. https://doi.org/10.1046/j.1469-8137.2002.00393.x
 
Lisek J., Sas-Paszt L., Derkowska E., Mrowicki T., Przybył M., Frąc M. (2016): Growth, yielding and healthiness of grapevine cultivars ‘Solaris’ and ‘Regent’ in response to fertilizers and biostimulants. Journal of Horticultural Research, 24: 49–60. https://doi.org/10.1515/johr-2016-0020
 
Łabanowska B.H., Piotrowski W. (2015): The Spotted Wing Drosophila Drosophila suzukii (Matsumura, 1931) – monitoring and first records in Poland. Journal of Horticultural Research, 23: 49–57. https://doi.org/10.2478/johr-2015-0020
 
Ma L., Hou C.W., Zhang X.Z, Li H.L., Han D.G., Wang Y., Han Z.H. (2013): Seasonal growth and spatial distribution of apple tree roots on different rootstocks or interstems. Journal of the American Society for Horticultural Science, 138: 79–87. https://doi.org/10.21273/JASHS.138.2.79
 
Majdi H. (1996): Root sampling methods – applications and limitations of the minirhizotron technique. Plant and Soil, 185: 255–258. https://doi.org/10.1007/BF02257530
 
Malusà E., Sas-Paszt L., Popińska W., Żurawicz E. (2007): The effect of a substrate containing arbuscular mycorrhizal fungi and rhizosphere microorganisms (Trichoderma, Bacillus, Pseudomonas and Streptomyces) and foliar fertilization on growth response and rhizosphere pH of three strawberry cultivars. International Journal of Fruit Science, 6: 25–41. https://doi.org/10.1300/J492v06n04_04
 
McCormack M.L., Guo D. (2014): Impacts of environmental factors on fine root lifespan. Frontiers in Plant Science, 5: 205. https://doi.org/10.3389/fpls.2014.00205
 
Noguchi K., Nagakura J., Konôpka B., Sakata T., Kaneko S., Takahashi M. (2013): Fine-root dynamics in sugi (Cryptomeria japonica) under manipulated soil nitrogen conditions. Plant and Soil, 364: 159–169. https://doi.org/10.1007/s11104-012-1354-9
 
Pregitzer K.S., Hendrick R.L., Fogel R. (1993): The demography of fine roots in response to patches of water and nitrogen. New Phytologist, 125: 575–580. https://doi.org/10.1111/j.1469-8137.1993.tb03905.x
 
Pregitzer K.S., Laskowski M.J., Burton A.J., Lessard V.C., Zak D.R. (1998): Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology, 18: 665–670. https://doi.org/10.1093/treephys/18.10.665
 
Psarras G., Merwin I.A., Lakso A.N., Ray J.A. (2000): Root growth phenology, root longevity, and rhizosphere respiration of field grown ‘Mutsu’ apple trees on ‘Malling 9’ rootstock. Journal of the American Society for Horticultural Science, 125: 596–602. https://doi.org/10.21273/JASHS.125.5.596
 
Rouphael Y., Franken P., Schneider C., Schwarz D., Giovannetti M., Agnolucci M., Pascale S.D., Bonini P., Colla G. (2015): Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Biostimulants in Horticulture, 196: 91–108. https://doi.org/10.1016/j.scienta.2015.09.002
 
Rozpara E. (2008): Growth and yield of eleven sweet cherry cultivars in central Poland. Acta Horticulturae (ISHS), 795: 2571. https://doi.org/10.17660/ActaHortic.2008.795.90
 
Rozpara E. (2013): Intensyfikacja uprawy czereśni (Prunus avium L.) w Polsce z zastosowaniem nowych odmian, podkładek i wstawek. Zeszyty Naukowe Instytutu Ogrodnictwa. Monografie i Rozprawy. Skierniewice: 1–118. (in Polish)
 
Rozpara E., Badowska-Czubik T., Kowalska J. (2010): Problems of the plum and cherry plants protection in ecological orchard. Journal of Research and Applications in Agricultural Engineering, 55: 73–75. (in Polish with English abstract)
 
Rozpara E., Grzyb Z.S., Omiecińska B., Czynczyk A. (2000): Ocena wzrostu i owocowania sześciu odmian czereśni na podkładce P-HL. Roczniki Akademii Rolniczej w Poznaniu CCCXXIII, Ogrodnictwo, 31: 131–137. (in Polish)
 
Rozpara E., Grzyb. Z.S., Omiecińska B., Czynczyk A. (2004): Results of eight years of research on the growth and yield of three sweet cherry cultivars grafted on PHL-A rootstock. Acta Horticulturae (ISHS), 663: 965–967. https://doi.org/10.17660/ActaHortic.2004.663.180
 
Sas Paszt L., Malusá E., Sumorok B., Canfora L., Derkowska E., Głuszek S. (2015): The influence of bioproducts on mycorrhizal occurrence and diversity in the rhizosphere of strawberry plants under controlled conditions. Advances in Microbiology, 5: 40–53.
 
Sitarek M., Bartosiewicz B (2013): Influence of five clonal rootstocks on the growth, productivity and fruit quality of ‘Sylvia’ and ‘Karina’ sweet cherry trees. Journal of Fruit and Ornamental Plant Research, 20: 5–10.
 
Sitarek M., Grzyb Z.S., Omiecińska B. (2005): Performance of sweet cherry trees on GiSelA® 5 rootstock. Acta Horticulturae (ISHS), 667: 389–391 https://doi.org/10.17660/ActaHortic.2005.667.55
 
Sofo A., Palese A., Casacchia T., Dichio B., Xiloyannis C. (2012): Sustainable fruit production in Mediterranean orchards subjected to drought stress. In: Ahmad P., Prasad M.N.V. (eds): Abiotic Stress Responses in Plants. Springer New York: 105–129.
 
Stachowiak A., Świerczyński S., Kolasiński M. (2014): Growth and yielding of sweet cherry trees grafted on new biotypes of Prunus mahaleb (L.). Acta Scientiarum Polonorum. Hortorum Cultus, 13: 131–143.
 
Stehr R. (2005): Experiences with dwarfing sweet cherry rootstocks in northern Germany. Acta Horticulturae (ISHS): 667: 173–178. https://doi.org/10.17660/ActaHortic.2005.667.25
 
Świerczyński S., Stachowiak A. (2012): Usefulness of four rootstocks and mycorhization treatment in production of sweet cherry maiden trees in a nursery. Acta Scientiarum Polonorum. Hortorum Cultus, 11: 149–159.
 
Tracy S.R., Mooney S.J., Sturrock C.J., Mairhofer S., Al-Traboulsi M., Bennett M.J., Pridmore T.P., Lynch J.P., Wells D.M., Ong C.K. (2015): Laboratory and field techniques for measuring root distribution and architecture. In: Ong C.K., Black C., Wilson J. (eds): Tree-Crop Interactions: Agroforestry in a Changing Climate. CABI: 258–277.
 
Verbon E.H., Liberman L.M. (2016): Beneficial microbes affect endogenous mechanisms controlling root development. Trends in Plant Science 21: 218–229. https://doi.org/10.1016/j.tplants.2016.01.013
 
Wells C.E., Eissenstat D.M. (2001) Marked differences in survivorship among apple roots of different diameters. Ecology 82: 882–892. https://doi.org/10.1890/0012-9658(2001)082[0882:MDISAA]2.0.CO;2
 
Wells C.E., Glenn D.M., Eissenstat D.M. (2002): Changes in the risk of fine-root mortality with age: a case study in peach, Prunus persica (Rosaceae). American Journal of Botany, 89: 79–87. https://doi.org/10.3732/ajb.89.1.79
 
Wu Y., Deng Y., Zhang J., Wu J., Tang Y., Cao G., Zhang F., Cui X. (2013): Root size and soil environments determine root lifespan: evidence from an alpine meadow on the Tibetan Plateau. Ecological Research, 28: 493–501. https://doi.org/10.1007/s11284-013-1038-9
 
Żurawicz E., Stutterheim N., Bruns C., Sas Paszt L. (2006): Crop growth effects of processed raw materials applied as fertilizers or growth stimulators – a summary of partial EU project results. Joint Organic Congress 30–31.05.2006 Odense, Denmark: 1–2. Available at http://orgprints.org/7388/1/Public-Denmark.pdf
 
Abrisqueta J.M., Mounzer O., Álvarez S., Conejero W., García-Orellana Y., Tapia L.M., Vera J., Abrisqueta I. Ruiz-Sánchez M.C. (2008): Root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation. Agricultural Water Management, 95: 959–967. https://doi.org/10.1016/j.agwat.2008.03.003
 
Aka-Kaçar Y., Akpinar Ç., Agar A., Yalçin-Mendi Y., Serçe S., Ortaş İ. (2010): The effect of mycorrhiza in nutrient uptake and biomass of cherry rootstocks during acclimatization. Romanian Biotechnological Letters, 15: 5246–5252.
 
Anderson L.J., Comas L.H., Lakso A.N., Eissenstat D.M. (2003): Multiple risk factors in root survivorship: a 4-year study in Concord grape. New Phytologist, 158: 489–501. https://doi.org/10.1046/j.1469-8137.2003.00757.x
 
Artacho P., Bonomelli C. (2016): Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees. Tree Physiology, 36: 601–617. https://doi.org/10.1093/treephys/tpw002
 
Atucha A., Merwin I.A., Brown M.G., Gardiazabal F., Mena F., Adriazola C., Goebel M., Bauerle T. (2013): Root distribution and demography in an avocado (Persea americana) orchard under groundcover management systems. Functional Plant Biology, 40: 507–515. https://doi.org/10.1071/FP12317
 
Baddeley J., Watson C. (2005): Influences of root diameter, tree age, soil depth and season on fine root survivorship in Prunus avium. Plant and Soil, 276: 15–22. https://doi.org/10.1007/s11104-005-0263-6
 
Baldi E., Toselli M. (2013): Root growth and survivorship in cow manure and compost amended soils. Plant, Soil and Environment, 59: 221–226.  https://doi.org/10.17221/857/2012-PSE
 
Baldi E., Toselli M., Eissenstat D.M., Marangoni B. (2010): Organic fertilization leads to increased peach root production and lifespan. Tree Physiology, 30: 1373–1382. https://doi.org/10.1093/treephys/tpq078
 
Basile B., Bryla D.R., Salsman M.L., Marsal J., Cirillo C., Johnson R.S., DeJong T.M. (2007): Growth patterns and morphology of fine roots of size-controlling and invigorating peach rootstocks. Tree Physiology, 27: 231–241. https://doi.org/10.1093/treephys/27.2.231
 
Battacharyya D., Babgohari M.Z., Rathor P., Prithiviraj B. (2015): Seaweed extracts as biostimulants in horticulture. Biostimulants in Horticulture, 196: 39–48. https://doi.org/10.1016/j.scienta.2015.09.012
 
Baum C., El-Tohamy W., Gruda N. (2015): Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Scientia Horticulturae, 187: 131–141. https://doi.org/10.1016/j.scienta.2015.03.002
 
Bevington K.B., Castle W.S. (1985): Annual root growth pattern of young citrus trees in relation to shoot growth, soil temperature, and soil water content. Journal of the American Society for Horticultural Science, 110: 840–845.
 
Blažková J., Drahošová H., Hlušičková I. (2010): Tree vigour, cropping, and phenology of sweet cherries in two systems of tree training on dwarf rootstocks. Horticultural Science. (Prague), 37: 127–138. https://doi.org/10.17221/60/2010-HORTSCI
 
Bonomelli C., Bonilla C., Acuña E., Artacho P. (2012): Seasonal pattern of root growth in relation to shoot phenology and soil temperature in sweet cherry trees (Prunus avium): A preliminary study in central Chile. Ciencia e Investigación Agraria, 39: 127–136. https://doi.org/10.4067/S0718-16202012000100010
 
Cavagnaro T.R., Bender S.F., Asghari H.R., van der Heijden M.G.A. (2015): The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends in Plant Science, 20: 283–290. https://doi.org/10.1016/j.tplants.2015.03.004
 
Ceccon C., Tagliavini M., Schmitt A.O., Eissenstat D.M. (2016): Untangling the effects of root age and tissue nitrogen on root respiration in Populus tremuloides at different nitrogen supply. Tree Physiology, 36: 618–627. https://doi.org/10.1093/treephys/tpw022
 
Chaparro J.M., Badri D.V., Bakker M.G., Sugiyama A., Manter D.K., Vivanco J.M. (2013): Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE 8: e55731.
 
Colla G., Nardi S., Cardarelli M., Ertani A., Lucini L., Canaguier R., Rouphael Y. (2015): Protein hydrolysates as biostimulants in horticulture. Biostimulants in Horticulture, 196: 28–38. https://doi.org/10.1016/j.scienta.2015.08.037
 
du Jardin P. (2015): Plant biostimulants: Definition, concept, main categories and regulation. Biostimulants in Horticulture, 196: 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
 
Ferguson J.C., Smucker A.J.M. (1989): Modifications of the minirhizotron video camera system for measuring spatial and temporal root dynamics. Soil Science Society of America Journal, 53: 1601–1605. https://doi.org/10.2136/sssaj1989.03615995005300050054x
 
Filipczak J., Żurawicz E., Paszt L.S. (2016): Influence of selected biostimulants on the growth and yielding of ‘Elkat’ strawberry plants. Zeszyty Naukowe Instytutu Ogrodnictwa, 24: 43–58. (in Polish)
 
Flore J.A., Layne D.R. (1999): Photoassimilate production and distribution in cherry. HortScience, 34: 1015–1019. https://doi.org/10.21273/HORTSCI.34.6.1015
 
Flores L., Martínez M.M., Ortega R. (2015): Integrated nutrition program in cherry (Prunus avium L.) ‘Lapins’’, in the VI region of Chile, based on soil bioinoculants and organic matter. Acta Horticulturae (ISHS), 1076: 187–192. https://doi.org/10.17660/ActaHortic.2015.1076.22
 
Franken-Bembenek S. (2005): Gisela® 5 Rootstock in Germany. Acta Horticulturae (ISHS), 667: 167–172. https://doi.org/10.17660/ActaHortic.2005.667.24
 
Głowacka A., Rozpara E. (2015): Growth, yielding and fruit quality of three sweet cherry cultivars under organic orchard conditions. Journal of Research and Applications in Agricultural Engineering, 60: 73–76.
 
Głuszek S., Sas Paszt L., Sumorok B., Derkowska E. (2008): Effect of mycorrhiza on growth and yield of horticultural plants. Postępy Nauk Rolniczych, 6: 11–22. (in Polish)
 
Głuszek S., Sas Paszt L., Sumorok B., Derkowska E., Kozera R. (2013): Application of the minirhizotron technique to studying the roots of fruit plants. Advances in Science and Technology – Research Journal, 7: 45–53. https://doi.org/10.5604/20804075.1049605
 
Głuszek S., Sas Paszt L., Jadczuk-Tobjasz E., Sumorok B. (2015): Fine root lifespan dynamics in four sour cherry (Prunus cerasus) cultivars grown in Central Poland using the minirhizotron technique. Dendrobiology, 73: 117–123. https://doi.org/10.12657/denbio.073.012
 
Grzyb Z.S., Sas Paszt L., Piotrowski W., Malusa E. (2015): The influence of mycorrhizal fungi on the growth of apple and sour cherry maidens fertilized with different bioproducts in the organic nursery. Journal of Life Sciences, 9: 221–228.
 
Grzyb Z.S., Sitarek M., Koziński B (2008): Evaluation of new rootstocks for ‘Vanda’ sweet cherry in Polish climatic conditions. Acta Horticulturae (ISHS), 795: 215–220. https://doi.org/10.17660/ActaHortic.2008.795.29
 
GUS (2018): Production of agricultural and horticultural crops in 2017. Warsaw, 2018.
 
Joslin J.D., Wolfe M.H. (1999): Disturbances during minirhizotron installation can affect root observation data. Soil Science Society of America Journal, 63: 218–221. https://doi.org/10.2136/sssaj1999.03615995006300010031x
 
Kaspar T.C., Bland W.L. (1992): Soil temperature and root growth. Soil Science, 154: 290–299. https://doi.org/10.1097/00010694-199210000-00005
 
King J.S., Albaugh T.J., Allen H.L., Buford M., Strain B.R., Dougherty P. (2002): Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 154: 389–398. https://doi.org/10.1046/j.1469-8137.2002.00393.x
 
Lisek J., Sas-Paszt L., Derkowska E., Mrowicki T., Przybył M., Frąc M. (2016): Growth, yielding and healthiness of grapevine cultivars ‘Solaris’ and ‘Regent’ in response to fertilizers and biostimulants. Journal of Horticultural Research, 24: 49–60. https://doi.org/10.1515/johr-2016-0020
 
Łabanowska B.H., Piotrowski W. (2015): The Spotted Wing Drosophila Drosophila suzukii (Matsumura, 1931) – monitoring and first records in Poland. Journal of Horticultural Research, 23: 49–57. https://doi.org/10.2478/johr-2015-0020
 
Ma L., Hou C.W., Zhang X.Z, Li H.L., Han D.G., Wang Y., Han Z.H. (2013): Seasonal growth and spatial distribution of apple tree roots on different rootstocks or interstems. Journal of the American Society for Horticultural Science, 138: 79–87. https://doi.org/10.21273/JASHS.138.2.79
 
Majdi H. (1996): Root sampling methods – applications and limitations of the minirhizotron technique. Plant and Soil, 185: 255–258. https://doi.org/10.1007/BF02257530
 
Malusà E., Sas-Paszt L., Popińska W., Żurawicz E. (2007): The effect of a substrate containing arbuscular mycorrhizal fungi and rhizosphere microorganisms (Trichoderma, Bacillus, Pseudomonas and Streptomyces) and foliar fertilization on growth response and rhizosphere pH of three strawberry cultivars. International Journal of Fruit Science, 6: 25–41. https://doi.org/10.1300/J492v06n04_04
 
McCormack M.L., Guo D. (2014): Impacts of environmental factors on fine root lifespan. Frontiers in Plant Science, 5: 205. https://doi.org/10.3389/fpls.2014.00205
 
Noguchi K., Nagakura J., Konôpka B., Sakata T., Kaneko S., Takahashi M. (2013): Fine-root dynamics in sugi (Cryptomeria japonica) under manipulated soil nitrogen conditions. Plant and Soil, 364: 159–169. https://doi.org/10.1007/s11104-012-1354-9
 
Pregitzer K.S., Hendrick R.L., Fogel R. (1993): The demography of fine roots in response to patches of water and nitrogen. New Phytologist, 125: 575–580. https://doi.org/10.1111/j.1469-8137.1993.tb03905.x
 
Pregitzer K.S., Laskowski M.J., Burton A.J., Lessard V.C., Zak D.R. (1998): Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology, 18: 665–670. https://doi.org/10.1093/treephys/18.10.665
 
Psarras G., Merwin I.A., Lakso A.N., Ray J.A. (2000): Root growth phenology, root longevity, and rhizosphere respiration of field grown ‘Mutsu’ apple trees on ‘Malling 9’ rootstock. Journal of the American Society for Horticultural Science, 125: 596–602. https://doi.org/10.21273/JASHS.125.5.596
 
Rouphael Y., Franken P., Schneider C., Schwarz D., Giovannetti M., Agnolucci M., Pascale S.D., Bonini P., Colla G. (2015): Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Biostimulants in Horticulture, 196: 91–108. https://doi.org/10.1016/j.scienta.2015.09.002
 
Rozpara E. (2008): Growth and yield of eleven sweet cherry cultivars in central Poland. Acta Horticulturae (ISHS), 795: 2571. https://doi.org/10.17660/ActaHortic.2008.795.90
 
Rozpara E. (2013): Intensyfikacja uprawy czereśni (Prunus avium L.) w Polsce z zastosowaniem nowych odmian, podkładek i wstawek. Zeszyty Naukowe Instytutu Ogrodnictwa. Monografie i Rozprawy. Skierniewice: 1–118. (in Polish)
 
Rozpara E., Badowska-Czubik T., Kowalska J. (2010): Problems of the plum and cherry plants protection in ecological orchard. Journal of Research and Applications in Agricultural Engineering, 55: 73–75. (in Polish with English abstract)
 
Rozpara E., Grzyb Z.S., Omiecińska B., Czynczyk A. (2000): Ocena wzrostu i owocowania sześciu odmian czereśni na podkładce P-HL. Roczniki Akademii Rolniczej w Poznaniu CCCXXIII, Ogrodnictwo, 31: 131–137. (in Polish)
 
Rozpara E., Grzyb. Z.S., Omiecińska B., Czynczyk A. (2004): Results of eight years of research on the growth and yield of three sweet cherry cultivars grafted on PHL-A rootstock. Acta Horticulturae (ISHS), 663: 965–967. https://doi.org/10.17660/ActaHortic.2004.663.180
 
Sas Paszt L., Malusá E., Sumorok B., Canfora L., Derkowska E., Głuszek S. (2015): The influence of bioproducts on mycorrhizal occurrence and diversity in the rhizosphere of strawberry plants under controlled conditions. Advances in Microbiology, 5: 40–53.
 
Sitarek M., Bartosiewicz B (2013): Influence of five clonal rootstocks on the growth, productivity and fruit quality of ‘Sylvia’ and ‘Karina’ sweet cherry trees. Journal of Fruit and Ornamental Plant Research, 20: 5–10.
 
Sitarek M., Grzyb Z.S., Omiecińska B. (2005): Performance of sweet cherry trees on GiSelA® 5 rootstock. Acta Horticulturae (ISHS), 667: 389–391 https://doi.org/10.17660/ActaHortic.2005.667.55
 
Sofo A., Palese A., Casacchia T., Dichio B., Xiloyannis C. (2012): Sustainable fruit production in Mediterranean orchards subjected to drought stress. In: Ahmad P., Prasad M.N.V. (eds): Abiotic Stress Responses in Plants. Springer New York: 105–129.
 
Stachowiak A., Świerczyński S., Kolasiński M. (2014): Growth and yielding of sweet cherry trees grafted on new biotypes of Prunus mahaleb (L.). Acta Scientiarum Polonorum. Hortorum Cultus, 13: 131–143.
 
Stehr R. (2005): Experiences with dwarfing sweet cherry rootstocks in northern Germany. Acta Horticulturae (ISHS): 667: 173–178. https://doi.org/10.17660/ActaHortic.2005.667.25
 
Świerczyński S., Stachowiak A. (2012): Usefulness of four rootstocks and mycorhization treatment in production of sweet cherry maiden trees in a nursery. Acta Scientiarum Polonorum. Hortorum Cultus, 11: 149–159.
 
Tracy S.R., Mooney S.J., Sturrock C.J., Mairhofer S., Al-Traboulsi M., Bennett M.J., Pridmore T.P., Lynch J.P., Wells D.M., Ong C.K. (2015): Laboratory and field techniques for measuring root distribution and architecture. In: Ong C.K., Black C., Wilson J. (eds): Tree-Crop Interactions: Agroforestry in a Changing Climate. CABI: 258–277.
 
Verbon E.H., Liberman L.M. (2016): Beneficial microbes affect endogenous mechanisms controlling root development. Trends in Plant Science 21: 218–229. https://doi.org/10.1016/j.tplants.2016.01.013
 
Wells C.E., Eissenstat D.M. (2001) Marked differences in survivorship among apple roots of different diameters. Ecology 82: 882–892. https://doi.org/10.1890/0012-9658(2001)082[0882:MDISAA]2.0.CO;2
 
Wells C.E., Glenn D.M., Eissenstat D.M. (2002): Changes in the risk of fine-root mortality with age: a case study in peach, Prunus persica (Rosaceae). American Journal of Botany, 89: 79–87. https://doi.org/10.3732/ajb.89.1.79
 
Wu Y., Deng Y., Zhang J., Wu J., Tang Y., Cao G., Zhang F., Cui X. (2013): Root size and soil environments determine root lifespan: evidence from an alpine meadow on the Tibetan Plateau. Ecological Research, 28: 493–501. https://doi.org/10.1007/s11284-013-1038-9
 
Żurawicz E., Stutterheim N., Bruns C., Sas Paszt L. (2006): Crop growth effects of processed raw materials applied as fertilizers or growth stimulators – a summary of partial EU project results. Joint Organic Congress 30–31.05.2006 Odense, Denmark: 1–2. Available at http://orgprints.org/7388/1/Public-Denmark.pdf
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti