Comparison of physicochemical traits of red-fleshed, commercial and ancient apple cultivars 

https://doi.org/10.17221/132/2015-HORTSCICitation:Contessa C., Botta R. (2016): Comparison of physicochemical traits of red-fleshed, commercial and ancient apple cultivars . Hort. Sci. (Prague), 43: 159-166.
download PDF
Cultivation of apples is currently based on a limited number of commercial cultivars; as a consequence, ancient and local varieties have almost completely disappeared. Red-fleshed, ancient and commercial cultivars were analysed for flesh firmness, soluble solid content, pH, titratable acidity, total phenolics and anthocyanin contents, total antioxidant capacity, sugars and organic acids composition, to evaluate their nutraceutical value. The ancient cultivars, in particular cv. Magnana, were generally higher in organic acids, sugars content and total phenolics content in the flesh than the commercial cultivars considered. The red-fleshed cultivar was distinct from the ancient and commercial apples and resulted in an excellent source of antioxidants, with values of anthocyanins content and antioxidant capacity five times higher than the other cultivars; these values were comparable to those of berry species. In addition, the red-fleshed apple was rich in malic acid, citric acid, fructose and glucose. The breeding of red flesh apples is still in progress and should consider the use of ancient cultivars for their positive physicochemical characteristics to improve flavour and storage aptitude.
References:
Bai J., Baldwin E.A., Goodner K.L., Mattheis J.P., Brecht J.K. (2005): Response of four apple cultivars to 1-Methylcyclopropene treatment and controlled atmosphere storage. Horticultural Science, 40: 1534–1538.
 
Burt B. A. (): The use of sorbitol- and xylitol-sweetened chewing gum in caries control. Journal of the American Dental Association, 137, 190-196  https://doi.org/10.14219/jada.archive.2006.0144
 
Benzie Iris F.F., Strain J.J. (1996): The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239, 70-76  https://doi.org/10.1006/abio.1996.0292
 
Boyer J., Liu R.H. (2004): Apple phytochemicals and their health benefits. Nutrition Journal, 3: 5  https://doi.org/10.1186/1475-2891-3-5
 
Ceymann Maria, Arrigoni Eva, Schärer Hans, Bozzi Nising Anna, Hurrell Richard F. (2012): Identification of apples rich in health-promoting flavan-3-ols and phenolic acids by measuring the polyphenol profile. Journal of Food Composition and Analysis, 26, 128-135  https://doi.org/10.1016/j.jfca.2011.12.002
 
Cheng G.W., Breen P.J. (1991): Activity of phenylalanine ammonialyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. Journal of Agricultural and Food Chemistry, 116: 865–869.
 
Clements R.S.J., Darnell B. (1980): Myo-inositol content of common foods: development of a high-myo-inositol diet. American Journal of Clinical Nutrition, 33: 1954–67.
 
Contessa Cecilia, Mellano Maria Gabriella, Beccaro Gabriele Loris, Giusiano Annalisa, Botta Roberto (2013): Total antioxidant capacity and total phenolic and anthocyanin contents in fruit species grown in Northwest Italy. Scientia Horticulturae, 160, 351-357  https://doi.org/10.1016/j.scienta.2013.06.019
 
Espley Richard V., Hellens Roger P., Putterill Jo, Stevenson David E., Kutty-Amma Sumathi, Allan Andrew C. (2007): Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal, 49, 414-427  https://doi.org/10.1111/j.1365-313X.2006.02964.x
 
Espley R. V., Brendolise C., Chagne D., Kutty-Amma S., Green S., Volz R., Putterill J., Schouten H. J., Gardiner S. E., Hellens R. P., Allan A. C. (2009): Multiple Repeats of a Promoter Segment Causes Transcription Factor Autoregulation in Red Apples. THE PLANT CELL ONLINE, 21, 168-183  https://doi.org/10.1105/tpc.108.059329
 
Espley Richard V., Bovy Arnaud, Bava Christina, Jaeger Sara R, Tomes Sumathi, Norling Cara, Crawford Jonathan, Rowan Daryl, McGhie Tony K., Brendolise Cyril, Putterill Jo, Schouten Henk J., Hellens Roger P., Allan Andrew C. (2013): Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnology Journal, 11, 408-419  https://doi.org/10.1111/pbi.12017
 
Faramarzi S., Yadollahi A., Soltani B.M. (2014): Preliminary evaluation of genetic diversity among Iranian red fleshed apples using microsatellite markers. Journal of Agricultural Science and Technology, 16: 373–384.
 
Francini Alessandra, Sebastiani Luca (2013): Phenolic Compounds in Apple (Malus x domestica Borkh.): Compounds Characterization and Stability during Postharvest and after Processing. Antioxidants, 2, 181-193  https://doi.org/10.3390/antiox2030181
 
Fuleki Tibor, Pelayo Estela, Palabay Rodrigo B. (1994): Sugar Composition of Varietal Juices Produced from Fresh and Stored Apples. Journal of Agricultural and Food Chemistry, 42, 1266-1275  https://doi.org/10.1021/jf00042a003
 
Gerhauser Clarissa (2008): Cancer Chemopreventive Potential of Apples, Apple Juice, and Apple Components. Planta Medica, 74, 1608-1624  https://doi.org/10.1055/s-0028-1088300
 
Harker F.Roger, Gunson F.Anne, Jaeger Sara R. (2003): The case for fruit quality: an interpretive review of consumer attitudes, and preferences for apples. Postharvest Biology and Technology, 28, 333-347  https://doi.org/10.1016/S0925-5214(02)00215-6
 
Hecke K, Herbinger K, Veberič R, Trobec M, Toplak H, Štampar F, Keppel H, Grill D (): Sugar-, acid- and phenol contents in apple cultivars from organic and integrated fruit cultivation. European Journal of Clinical Nutrition, 60, 1136-1140  https://doi.org/10.1038/sj.ejcn.1602430
 
Hyson D. A. (): A Comprehensive Review of Apples and Apple Components and Their Relationship to Human Health. Advances in Nutrition: An International Review Journal, 2, 408-420  https://doi.org/10.3945/an.111.000513
 
Iacopini P., Camangi F., Stefani A., Sebastiani L. (2010): Antiradical potential of ancient Italian apple varieties of Malus ×
 
domestica Borkh. in a peroxynitrite-induced oxidative process. Journal of Food Composition and Analysis, 23: 518–524.
 
Karadeniz Feryal, Ekşi Aziz (2002): Sugar composition of apple juices. European Food Research and Technology, 215, 145-148  https://doi.org/10.1007/s00217-002-0505-2
 
Ker Yaw-Bee, Peng Chiung-Huei, Chyau Charng-Cherng, Peng Robert Y. (2010): Soluble Polysaccharide Composition and myo -Inositol Content Help Differentiate the Antioxidative and Hypolipidemic Capacity of Peeled Apples. Journal of Agricultural and Food Chemistry, 58, 4660-4665  https://doi.org/10.1021/jf903495h
 
Łata Barbara, Trampczynska Aleksandra, Paczesna Justyna (2009): Cultivar variation in apple peel and whole fruit phenolic composition. Scientia Horticulturae, 121, 176-181  https://doi.org/10.1016/j.scienta.2009.01.038
 
Lotito S.B., Frei B. (2004): The increase in human plasma antioxidant capacity after apple consumption is due to the metabolic effect of fructose on urate, not apple-derived antioxidant flavonoids. Free Radical Biology & Medicine, 37: 251–8.
 
Malec Marta, Le Quéré Jean-Michel, Sotin Hélène, Kolodziejczyk Krzysztof, Bauduin Rémi, Guyot Sylvain (2014): Polyphenol Profiling of a Red-Fleshed Apple Cultivar and Evaluation of the Color Extractability and Stability in the Juice. Journal of Agricultural and Food Chemistry, 62, 6944-6954  https://doi.org/10.1021/jf500336v
 
Markowski Jarosław, Mieszczakowska Monika, Płocharski Witold (2009): Effect of apple cultivar and enzyme treatment on phenolic compounds content during clear apple juice production. International Journal of Food Science & Technology, 44, 1002-1010  https://doi.org/10.1111/j.1365-2621.2008.01859.x
 
Nour V., Trandafir I., Ionica M.E. (2010): Compositional characteristics of fruits of several apple (Malus domestica Borkh.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38: 228–233.
 
Pellegrini N., Serafini M., Colombi B., Del Rio D., Salvatore S., Bianchi M., Brighenti F. (2003): Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. Journal of Nutrition, 133: 2812–2819.
 
Slinkard K., Singleton V.L. (1977): Total phenol analyses: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28: 49–55.
 
Skendrović Babojelić M., Ivančić K., Družić J., Kovač A., Voća S. (2007): Chemical and sensory characteristics of three apple cultivars (Malus × domestica Borkh.). Agriculturae Conspectus Scientificus, 72: 317–322.
 
Spallholz D.J.E., Boylan M., Driskell J.A. (1999): Nutrition: chemistry and biology. 2nd Ed. Boca Raton, CRC Press LLC, FloridaFine modul.
 
Wu Jihong, Gao Haiyan, Zhao Lei, Liao Xiaojun, Chen Fang, Wang Zhenfu, Hu Xiaosong (2007): Chemical compositional characterization of some apple cultivars. Food Chemistry, 103, 88-93  https://doi.org/10.1016/j.foodchem.2006.07.030
 
Würdig Juliane, Flachowsky Henryk, Höfer Monika, Peil Andreas, Eldin Ali Mohammed Ali Mohammed Saad, Hanke Magda-Viola (2014): Phenotypic and genetic analysis of the German Malus Germplasm Collection in terms of type 1 and type 2 red-fleshed apples. Gene, 544, 198-207  https://doi.org/10.1016/j.gene.2014.04.045
 
Yuen C.M.C., Haynes Y., Warton M. (1995): Consumer acceptance of Jonathan and Delecious apples in relation to fruit maturity and physico-chemical attributes. Asian Food Journal, 10: 139–144.
 
Bai J., Baldwin E.A., Goodner K.L., Mattheis J.P., Brecht J.K. (2005): Response of four apple cultivars to 1-Methylcyclopropene treatment and controlled atmosphere storage. Horticultural Science, 40: 1534–1538.
 
Burt B. A. (): The use of sorbitol- and xylitol-sweetened chewing gum in caries control. Journal of the American Dental Association, 137, 190-196  https://doi.org/10.14219/jada.archive.2006.0144
 
Benzie Iris F.F., Strain J.J. (1996): The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239, 70-76  https://doi.org/10.1006/abio.1996.0292
 
Boyer J., Liu R.H. (2004): Apple phytochemicals and their health benefits. Nutrition Journal, 3: 5  https://doi.org/10.1186/1475-2891-3-5
 
Ceymann Maria, Arrigoni Eva, Schärer Hans, Bozzi Nising Anna, Hurrell Richard F. (2012): Identification of apples rich in health-promoting flavan-3-ols and phenolic acids by measuring the polyphenol profile. Journal of Food Composition and Analysis, 26, 128-135  https://doi.org/10.1016/j.jfca.2011.12.002
 
Cheng G.W., Breen P.J. (1991): Activity of phenylalanine ammonialyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. Journal of Agricultural and Food Chemistry, 116: 865–869.
 
Clements R.S.J., Darnell B. (1980): Myo-inositol content of common foods: development of a high-myo-inositol diet. American Journal of Clinical Nutrition, 33: 1954–67.
 
Contessa Cecilia, Mellano Maria Gabriella, Beccaro Gabriele Loris, Giusiano Annalisa, Botta Roberto (2013): Total antioxidant capacity and total phenolic and anthocyanin contents in fruit species grown in Northwest Italy. Scientia Horticulturae, 160, 351-357  https://doi.org/10.1016/j.scienta.2013.06.019
 
Espley Richard V., Hellens Roger P., Putterill Jo, Stevenson David E., Kutty-Amma Sumathi, Allan Andrew C. (2007): Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. The Plant Journal, 49, 414-427  https://doi.org/10.1111/j.1365-313X.2006.02964.x
 
Espley R. V., Brendolise C., Chagne D., Kutty-Amma S., Green S., Volz R., Putterill J., Schouten H. J., Gardiner S. E., Hellens R. P., Allan A. C. (2009): Multiple Repeats of a Promoter Segment Causes Transcription Factor Autoregulation in Red Apples. THE PLANT CELL ONLINE, 21, 168-183  https://doi.org/10.1105/tpc.108.059329
 
Espley Richard V., Bovy Arnaud, Bava Christina, Jaeger Sara R, Tomes Sumathi, Norling Cara, Crawford Jonathan, Rowan Daryl, McGhie Tony K., Brendolise Cyril, Putterill Jo, Schouten Henk J., Hellens Roger P., Allan Andrew C. (2013): Analysis of genetically modified red-fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnology Journal, 11, 408-419  https://doi.org/10.1111/pbi.12017
 
Faramarzi S., Yadollahi A., Soltani B.M. (2014): Preliminary evaluation of genetic diversity among Iranian red fleshed apples using microsatellite markers. Journal of Agricultural Science and Technology, 16: 373–384.
 
Francini Alessandra, Sebastiani Luca (2013): Phenolic Compounds in Apple (Malus x domestica Borkh.): Compounds Characterization and Stability during Postharvest and after Processing. Antioxidants, 2, 181-193  https://doi.org/10.3390/antiox2030181
 
Fuleki Tibor, Pelayo Estela, Palabay Rodrigo B. (1994): Sugar Composition of Varietal Juices Produced from Fresh and Stored Apples. Journal of Agricultural and Food Chemistry, 42, 1266-1275  https://doi.org/10.1021/jf00042a003
 
Gerhauser Clarissa (2008): Cancer Chemopreventive Potential of Apples, Apple Juice, and Apple Components. Planta Medica, 74, 1608-1624  https://doi.org/10.1055/s-0028-1088300
 
Harker F.Roger, Gunson F.Anne, Jaeger Sara R. (2003): The case for fruit quality: an interpretive review of consumer attitudes, and preferences for apples. Postharvest Biology and Technology, 28, 333-347  https://doi.org/10.1016/S0925-5214(02)00215-6
 
Hecke K, Herbinger K, Veberič R, Trobec M, Toplak H, Štampar F, Keppel H, Grill D (): Sugar-, acid- and phenol contents in apple cultivars from organic and integrated fruit cultivation. European Journal of Clinical Nutrition, 60, 1136-1140  https://doi.org/10.1038/sj.ejcn.1602430
 
Hyson D. A. (): A Comprehensive Review of Apples and Apple Components and Their Relationship to Human Health. Advances in Nutrition: An International Review Journal, 2, 408-420  https://doi.org/10.3945/an.111.000513
 
Iacopini P., Camangi F., Stefani A., Sebastiani L. (2010): Antiradical potential of ancient Italian apple varieties of Malus ×
 
domestica Borkh. in a peroxynitrite-induced oxidative process. Journal of Food Composition and Analysis, 23: 518–524.
 
Karadeniz Feryal, Ekşi Aziz (2002): Sugar composition of apple juices. European Food Research and Technology, 215, 145-148  https://doi.org/10.1007/s00217-002-0505-2
 
Ker Yaw-Bee, Peng Chiung-Huei, Chyau Charng-Cherng, Peng Robert Y. (2010): Soluble Polysaccharide Composition and myo -Inositol Content Help Differentiate the Antioxidative and Hypolipidemic Capacity of Peeled Apples. Journal of Agricultural and Food Chemistry, 58, 4660-4665  https://doi.org/10.1021/jf903495h
 
Łata Barbara, Trampczynska Aleksandra, Paczesna Justyna (2009): Cultivar variation in apple peel and whole fruit phenolic composition. Scientia Horticulturae, 121, 176-181  https://doi.org/10.1016/j.scienta.2009.01.038
 
Lotito S.B., Frei B. (2004): The increase in human plasma antioxidant capacity after apple consumption is due to the metabolic effect of fructose on urate, not apple-derived antioxidant flavonoids. Free Radical Biology & Medicine, 37: 251–8.
 
Malec Marta, Le Quéré Jean-Michel, Sotin Hélène, Kolodziejczyk Krzysztof, Bauduin Rémi, Guyot Sylvain (2014): Polyphenol Profiling of a Red-Fleshed Apple Cultivar and Evaluation of the Color Extractability and Stability in the Juice. Journal of Agricultural and Food Chemistry, 62, 6944-6954  https://doi.org/10.1021/jf500336v
 
Markowski Jarosław, Mieszczakowska Monika, Płocharski Witold (2009): Effect of apple cultivar and enzyme treatment on phenolic compounds content during clear apple juice production. International Journal of Food Science & Technology, 44, 1002-1010  https://doi.org/10.1111/j.1365-2621.2008.01859.x
 
Nour V., Trandafir I., Ionica M.E. (2010): Compositional characteristics of fruits of several apple (Malus domestica Borkh.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38: 228–233.
 
Pellegrini N., Serafini M., Colombi B., Del Rio D., Salvatore S., Bianchi M., Brighenti F. (2003): Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. Journal of Nutrition, 133: 2812–2819.
 
Slinkard K., Singleton V.L. (1977): Total phenol analyses: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28: 49–55.
 
Skendrović Babojelić M., Ivančić K., Družić J., Kovač A., Voća S. (2007): Chemical and sensory characteristics of three apple cultivars (Malus × domestica Borkh.). Agriculturae Conspectus Scientificus, 72: 317–322.
 
Spallholz D.J.E., Boylan M., Driskell J.A. (1999): Nutrition: chemistry and biology. 2nd Ed. Boca Raton, CRC Press LLC, FloridaFine modul.
 
Wu Jihong, Gao Haiyan, Zhao Lei, Liao Xiaojun, Chen Fang, Wang Zhenfu, Hu Xiaosong (2007): Chemical compositional characterization of some apple cultivars. Food Chemistry, 103, 88-93  https://doi.org/10.1016/j.foodchem.2006.07.030
 
Würdig Juliane, Flachowsky Henryk, Höfer Monika, Peil Andreas, Eldin Ali Mohammed Ali Mohammed Saad, Hanke Magda-Viola (2014): Phenotypic and genetic analysis of the German Malus Germplasm Collection in terms of type 1 and type 2 red-fleshed apples. Gene, 544, 198-207  https://doi.org/10.1016/j.gene.2014.04.045
 
Yuen C.M.C., Haynes Y., Warton M. (1995): Consumer acceptance of Jonathan and Delecious apples in relation to fruit maturity and physico-chemical attributes. Asian Food Journal, 10: 139–144.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti