Commercial and nutraceutical quality of grafted melon cultivated under hydric stress

https://doi.org/10.17221/139/2019-HORTSCICitation:

Villegas-Olguín M.A., Cabrera De la Fuente M., Benavides-Mendoza A., Juárez-Maldonado A., Sandoval Rangel A., Fernandez-Cuasimamani E. (2020): Commercial and nutraceutical quality of grafted melon cultivated under different water tension. Hort. Sci. (Prague), 47: 139–149.

download PDF

Water stress decreases the quality of fruit by generating reactive oxygen species. Grafting is a technique that can improve the efficiency of crop water usage. This work was performed in order to assess the effect of different water stresses on the commercial and nutraceutical quality of a melon fruit. Cantaloupe melon plants, grown under shade houses were grafted onto a creole pumpkin rootstock and grown with different water stresses (20, 30, and 40 kPa). The grafted melon plants under 30-kPa water stress (G30) showed greater fruit firmness and increased catalase activity. The G30 fruits showed an increase in GPX activity of up to 80% over the non-grafted plants. The GSH was higher in fruits subjected to the 40-kPa water tension. The superoxide dismutase showed a 15% greater inhibition in the fruits from the non-grafted plants. At higher water tensions, the DPPH antioxidant activity decreased, while the vitamin C content increased.

References:
AOAC (1995): Official Methods of Analysis (15th Ed.). Association of Official Analytical Chemists, Washington, DC.
 
Asada K. (2006): Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141: 391–396.  https://doi.org/10.1104/pp.106.082040
 
Barbosa M.A.M.et al. (2014): Photosynthesis-involvement in modulation of ascorbate and glutathione in Euterpe oleracea plants exposed to drought. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42: 119–127.  https://doi.org/10.15835/nbha4219336
 
Barbosa M.A.M., Lobato A.K. da S., Pereira T.S., Viana G.D.M., Barbosa J.R.S., Coelho K.N.N. (2017): Antioxidant system is insufficient to prevent cell damages in Euterpe oleracea exposed to water deficit. Emirates Journal of Food and Agriculture, 29: 206–211. https://doi.org/10.9755/ejfa.2016-09-1217
 
Barzegar T., Lotfi H., Rabiei V., Ghahremani Z., Nikbakht J. (2017): Effect of water-deficit stress on fruit yield, antioxidant activity, and some physiological traits of four Iranian melon genotypes. Iranian Journal of Horticultural Science, 48: 13–25.
 
Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
 
Cansev A., Gulen H., Eris A. (2011): The activities of catalase and ascorbate peroxidase in olive (Olea europaea L. cv. Gemlik) under low temperature stress. Horticulture Environment and Biotechnology, 52: 113–120.  https://doi.org/10.1007/s13580-011-0126-4
 
Ding H., Zhang Z., Kang T., Dai L., Ci D., Qin F., Song W. (2017): Rooting traits of peanut genotypes differing in drought tolerance under drought stress. International Journal of Plant Production, 11: 349–360.
 
Gaion L. A., Braz L.T., Carvalho R.F. (2018): Grafting in vegetable crops: a great technique for agriculture. International Journal of Vegetable Science, 24: 85–102.  https://doi.org/10.1080/19315260.2017.1357062
 
Gall H., Philippe F., Domon J.-M., Gillet F., Pelloux J., Rayon C. (2015): Cell Wall Metabolism in Response to Abiotic Stress. Plants, 4: 112–166.  https://doi.org/10.3390/plants4010112
 
Gaytan Mascorro A., Chew Madinaveitia Y.I. (2014): Injerto en melón y sandía. Matamoros, Coahuila. Available at biblioteca.inifap.gob.mx:8080/xmlui/bitstream/handle/123456789/3866/INJERTO_MELON_SANDIA_GAYTANM.pdf?sequence=1
 
Gill S.S., Tuteja N. (2010): Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48: 909–930.  https://doi.org/10.1016/j.plaphy.2010.08.016
 
Hernández-Antonio A., Hansen A.M. (2011): Uso de plaguicidas en dos zonas agrícolas de méxico y evaluación de la contaminación de agua y sedimentos. Revista Internacional de Contaminacion Ambiental, 27: 115–127.
 
Kumar P., Rouphael Y., Cardarelli M., Colla G. (2017): Vegetable grafting as a tool to improve drought resistance and water use efficiency. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01130
 
Kyriacou M.C., Leskovar D.I., Colla G., Rouphael Y. (2018): Watermelon and melon fruit quality: The genotypic and agro-environmental factors implicated. Scientia Horticulturae, 234: 393–408.  https://doi.org/10.1016/j.scienta.2018.01.032
 
Kyriacou M.C., Rouphael Y., Colla G., Zrenner R., Schwarz D. (2017): Vegetable grafting: the implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Frontiers in Plant Science, 8.  https://doi.org/10.3389/fpls.2017.00741
 
Labunskyy V.M., Hatfield D.L., Gladyshev V.N. (2014): Selenoproteins: Molecular pathways and physiological roles. Physiological Reviews, 94: 739–777.  https://doi.org/10.1152/physrev.00039.2013
 
Liu Y.S., Wang Q.L., Li B.Y. (2010): New insights into plant graft hybridization. Heredity, 104: 1–2.  https://doi.org/10.1038/hdy.2009.115
 
Mo Y., Yang R., Liu L., Gu X., Yang X., Wang Y., Li H. (2016): Growth, photosynthesis and adaptive responses of wild and domesticated watermelon genotypes to drought stress and subsequent re-watering. Plant Growth Regulation, 79: 229–241.  https://doi.org/10.1007/s10725-015-0128-9
 
Mudge K., Janick J., Scofield S., Goldschmidt E.E. (2009): A history of grafting. Horticultural Reviews, 35: 437–493.
 
Oda M. (1995): New grafting methods for fruit-bearing vegetables in Japan. Japan Agricultural Research Quarterly, 29: 187–194.
 
Pignocchi C., Foyer C.H. (2003): Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Current Opinion in Plant Biology, 6: 379–389.  https://doi.org/10.1016/S1369-5266(03)00069-4
 
Pradhan S.R., Sahu G.S., Tripathy P., Dash S.K., Mishra B., Jena R., Sahoo T.R. (2017): Vegetable grafting: A multidimentional approach for crop management in vegetables. International Journal of Current Microbiology and Applied Sciences, 6: 3332–3345.  https://doi.org/10.20546/ijcmas.2017.610.390
 
Ramírez Barraza B.A., García Salazar J.A., Mora Flores J.S. (2015): Producción de melón y sandía en la Comarca Lagunera: un estudio de planeación para reducir la volatilidad de precios. Ciencia Ergo-Sum, 22: 45–53.
 
Rolland L., Vega Cárdenas Y. (2010): La gestión del agua en México. Polis, 6: 155–188.
 
Rouphael Y., Schwarz D., Krumbein A. Colla G. (2010): Impact of grafting on product quality of fruit vegetables. Scientia Horticulturae, 127: 172–179.  https://doi.org/10.1016/j.scienta.2010.09.001
 
Salazar Moreno R., Rojano Aguilar A., López Cruz I.L. (2014): La eficiencia en el uso del agua en la agricultura controlada. Tecnología y Ciencias Del Agua, 5: 177–183.
 
Salisbury F.B., Ross C.W. (1994): Fisiología vegetal. Grupo Editorial Iberoamérica.
 
Sánchez Rodríguez E., Romero L., Ruiz J.M. (2016): Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress. Journal of Plant Physiology, 190: 72–78.  https://doi.org/10.1016/j.jplph.2015.10.010
 
Sensoy S., Ertek A., Gedik I., Kucukyumuk C. (2007): Irrigation frequency and amount affect yield and quality of field-grown melon (Cucumis melo L.): Agricultural Water Management, 88: 269–274.  https://doi.org/10.1016/j.agwat.2006.10.015
 
Shao H.-B., Chu L.-Y., Jaleel C.A., Zhao C.-X. (2008): Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies, 331: 215–225.  https://doi.org/10.1016/j.crvi.2008.01.002
 
Soteriou G. A., Siomos A.S., Gerasopoulos D., Rouphael Y., Georgiadou S., & Kyriacou M.C. (2017): Biochemical and histological contributions to textural changes in watermelon fruit modulated by grafting. Food Chemistry, 237: 133–140.
 
Steiner A. (1961): A Universal Method for Preparing Nutrient Solutions of a Certain Desired Composition. Plant and Soil, 15: 134–154.  https://doi.org/10.1007/BF01347224
 
Turnbull C.G. N. (2010): Grafting as a research tool. In: Hennig L., Köhler C. (eds): Plant Developmental Biology (Vol. 655), Totowa, NJ, Humana Press.
 
USDA (2008): United States Standards for grades of cantaloupes. Agricultural Marketing Service, 1–6. United States Department of Agriculture. Available at https://www.ams.usda.gov/grades-standards/cantaloup-grades-and-standards
 
Vargas-Hernandez M. et. al. (2017): Plant Hormesis Management with biostimulants of biotic origin in agriculture. Frontiers in Plant Science, 8: 1–11. https://doi.org/10.3389/fpls.2017.01762
 
Wang W.B., Kim Y.H., Lee H.S., Kim K.Y., Deng X.P., Kwak S.S. (2009): Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 47: 570–577.  https://doi.org/10.1016/j.plaphy.2009.02.009
 
Wang J., Huang G., Li J., Zheng J., Huang Q., Liu H. (2017): Effect of soil moisture-based furrow irrigation scheduling on melon (Cucumis melo L.) yield and quality in an arid region of Northwest China. Agricultural Water Management, 179: 167–176.  https://doi.org/10.1016/j.agwat.2016.04.023
 
Xue T., Hartikainen H., Piironen V. (2001): Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil, 237: 55–61.  https://doi.org/10.1023/A:1013369804867
 
Yang H. et al. (2017): Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agricultural Water Management, 179: 193–204.  https://doi.org/10.1016/j.agwat.2016.05.029
 
Yoosefzadeh Najafabadi M., Soltani F., Noory H., Díaz-Pérez J.C. (2018): Growth, yield and enzyme activity response of watermelon accessions exposed to irrigation water deficit. International Journal of Vegetable Science, 00: 1–15.  https://doi.org/10.1080/19315260.2017.1419329
 
Zeinalipour N., Haghbeen K., Tavassolian I., Karkhane A.A., Ghashghaie J. (2017): Enhanced production of 3-methylthiopropionic ethyl ester in native Iranian Cucumis melo L. Group dudaim under regulated deficit irrigation. Journal of Functional Foods, 30: 56–62.  https://doi.org/10.1016/j.jff.2016.12.019
 
Zhang Z.K, Li H., Zhag Y., Huang Z.J., Chen K., Liu S.Q (2010): Grafting enhances copper tolerance of cucumber through regulating nutrient uptake and antioxidative system. Agricultural Sciences in China, 9: 1758–1770. https://doi.org/10.1016/S1671-2927(09)60274-1
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti