Modelling evapotranspiration of soilless cut roses ‘Red Naomi’ based on climatic and crop predictors

https://doi.org/10.17221/147/2017-HORTSCICitation:Costa A., Poças I., Cunha M. (2019): Modelling evapotranspiration of soilless cut roses ‘Red Naomi’ based on climatic and crop predictors. Hort. Sci. (Prague), 46: 107-114.
download PDF

This study aimed to estimate the daily crop evapotranspiration (ETc) of soilless cut ‘Red Naomi’ roses, cultivated in a commercial glass greenhouse, using climatic and crop predictors. A multiple stepwise regression technique was applied for estimating ETc using the daily relative humidity, stem leaf area and number of leaves of the bended stems. The model explained 90% of the daily ETc variability (R2 = 0.90, n = 33, P < 0.0001) measured by weighing lysimeters. The mean relative difference between the observed and the estimated daily ETc was 9.1%. The methodology revealed a high accuracy and precision in the estimation of daily ETc.

References:
Allen Richard G., Pereira Luis S., Howell Terry A., Jensen Marvin E. (2011): Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management, 98, 899-920 https://doi.org/10.1016/j.agwat.2010.12.015
 
Allen R.G., Pereira L.S., Raes D., Smith M. (1998): Crop evapotranspiration: guidelines for computing crop water requirements. FAO: Irrigation and Drainage Paper No. 56., Food and Agriculture Organization of the United Nations.
 
Baas R., van Rijssel E. (2006): TRANSPIRATION OF GLASSHOUSE ROSE CROPS: EVALUATION OF REGRESSION MODELS. Acta Horticulturae, , 547-556 https://doi.org/10.17660/ActaHortic.2006.718.64
 
Bacci L. et al. (2011): Modelling evapotranspiration of container crops for irrigation scheduling. In: Evapotranspiration – From Measurements to Agricultural and Environmental Applications. Croatia, InTech: 263–282.
 
BAILLE M, BAILLE A, DELMON D (1994): Microclimate and transpiration of greenhouse rose crops. Agricultural and Forest Meteorology, 71, 83-97 https://doi.org/10.1016/0168-1923(94)90101-5
 
Bayer Amanda, Mahbub Imran, Chappell Matthew, Ruter John, van Iersel Marc W. (2013): Water Use and Growth of Hibiscus acetosella ‘Panama Red’ Grown with a Soil Moisture Sensor-controlled Irrigation System. HortScience, 48, 980-987 https://doi.org/10.21273/HORTSCI.48.8.980
 
Costa Ana, Pôças Isabel, Cunha Mário (2016): Estimating the Leaf Area of Cut Roses in Different Growth Stages Using Image Processing and Allometrics. Horticulturae, 2, 6- https://doi.org/10.3390/horticulturae2030006
 
Cunha Mário, Marçal André R. S., Silva Lisa (2010): Very early prediction of wine yield based on satellite data from VEGETATION. International Journal of Remote Sensing, 31, 3125-3142 https://doi.org/10.1080/01431160903154382
 
H. J. Farahani , T. A. Howell , W. J. Shuttleworth , W. C. Bausch (2007): Evapotranspiration: Progress in Measurement and Modeling in Agriculture. Transactions of the ASABE, 50, 1627-1638 https://doi.org/10.13031/2013.23965
 
Gavilán Pedro, Ruiz Natividad, Lozano David (2015): Daily forecasting of reference and strawberry crop evapotranspiration in greenhouses in a Mediterranean climate based on solar radiation estimates. Agricultural Water Management, 159, 307-317 https://doi.org/10.1016/j.agwat.2015.06.012
 
Harel Danny, Sofer Myron, Broner Moshe, Zohar Dovi, Gantz Shelly (2014): Growth-Stage-Specific Kc of Greenhouse Tomato Plants Grown in Semi-Arid Mediterranean Region. Journal of Agricultural Science, 6, - https://doi.org/10.5539/jas.v6n11p132
 
Katsoulas N., Kittas C. (2011): Greenhouse crop transpiration modelling. In: Evapotranspiration – from Measurements to Agricultural and Environmental Applications. Croatia, InTech: 311–328.
 
Litago J., Baptista F.J., Meneses J.F., Navas L.M., Bailey B.J., Sánchez-Girón V. (2005): Statistical Modelling of the Microclimate in a Naturally Ventilated Greenhouse. Biosystems Engineering, 92, 365-381 https://doi.org/10.1016/j.biosystemseng.2005.07.015
 
Montero J.I., van Henten E.J., Son J.E., Castilla N. (2011): GREENHOUSE ENGINEERING: NEW TECHNOLOGIES AND APPROACHES. Acta Horticulturae, , 51-63 https://doi.org/10.17660/ActaHortic.2011.893.1
 
Montgomery D., Peck A. (1992): Introduction to linear regression analysis. New York, John Wiley and Sons USA.
 
Morille B., Migeon C., Bournet P.E. (2013): Is the Penman–Monteith model adapted to predict crop transpiration under greenhouse conditions? Application to a New Guinea Impatiens crop. Scientia Horticulturae, 152, 80-91 https://doi.org/10.1016/j.scienta.2013.01.010
 
Mpusia P. (2006): Comparison of water consumption between greenhouse and outdoor cultivation. [Master Thesis.] International Institute for Geo-information Science and Earth Observation in Netherlands: 1–75.
 
NSW (2009): Preventing pests and diseases in the greenhouse – Distribution uniformity of irrigation (Fact sheet). Available at http://www.dpi.nsw.gov.au/
 
Orgaz F., Fernández M.D., Bonachela S., Gallardo M., Fereres E. (2005): Evapotranspiration of horticultural crops in an unheated plastic greenhouse. Agricultural Water Management, 72, 81-96 https://doi.org/10.1016/j.agwat.2004.09.010
 
Raviv Michael, Blom Theo J. (2001): The effect of water availability and quality on photosynthesis and productivity of soilless-grown cut roses. Scientia Horticulturae, 88, 257-276 https://doi.org/10.1016/S0304-4238(00)00239-9
 
Stanghellini C. (1987): Transpiration of greenhouse crops: an aid to climate management. [Ph.D. Thesis.] Instituut voor Mechanisatie in Wageningen: 1–161.
 
Suay R., Martínez P.F., Roca D., Martínez M., Herrero J.M., Ramos C. (2003): MEASUREMENT AND ESTIMATION OF TRANSPIRATION OF A SOILLESS ROSE CROP AND APPLICATION TO IRRIGATION MANAGEMENT. Acta Horticulturae, , 625-630 https://doi.org/10.17660/ActaHortic.2003.614.93
 
Villarreal-Guerrero F., Kacira M., Fitz-Rodríguez E., Kubota C., Giacomelli G.A., Linker R., Arbel A. (2012): Comparison of three evapotranspiration models for a greenhouse cooling strategy with natural ventilation and variable high pressure fogging. Scientia Horticulturae, 134, 210-221 https://doi.org/10.1016/j.scienta.2011.10.016
 
download PDF

© 2019 Czech Academy of Agricultural Sciences