Modelling evapotranspiration of soilless cut roses ‘Red Naomi’ based on climatic and crop predictors
This study aimed to estimate the daily crop evapotranspiration (ETc) of soilless cut ‘Red Naomi’ roses, cultivated in a commercial glass greenhouse, using climatic and crop predictors. A multiple stepwise regression technique was applied for estimating ETc using the daily relative humidity, stem leaf area and number of leaves of the bended stems. The model explained 90% of the daily ETc variability (R2 = 0.90, n = 33, P < 0.0001) measured by weighing lysimeters. The mean relative difference between the observed and the estimated daily ETc was 9.1%. The methodology revealed a high accuracy and precision in the estimation of daily ETc.
Allen Richard G., Pereira Luis S., Howell Terry A., Jensen Marvin E. (2011): Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management, 98, 899-920
https://doi.org/10.1016/j.agwat.2010.12.015
Allen R.G., Pereira L.S., Raes D., Smith M. (1998): Crop evapotranspiration: guidelines for computing crop water requirements. FAO: Irrigation and Drainage Paper No. 56., Food and Agriculture Organization of the United Nations.
Baas R., van Rijssel E. (2006): TRANSPIRATION OF GLASSHOUSE ROSE CROPS: EVALUATION OF REGRESSION MODELS. Acta Horticulturae, , 547-556
https://doi.org/10.17660/ActaHortic.2006.718.64
Bacci L. et al. (2011): Modelling evapotranspiration of container crops for irrigation scheduling. In: Evapotranspiration – From Measurements to Agricultural and Environmental Applications. Croatia, InTech: 263–282.
BAILLE M, BAILLE A, DELMON D (1994): Microclimate and transpiration of greenhouse rose crops. Agricultural and Forest Meteorology, 71, 83-97
https://doi.org/10.1016/0168-1923(94)90101-5
Bayer Amanda, Mahbub Imran, Chappell Matthew, Ruter John, van Iersel Marc W. (2013): Water Use and Growth of Hibiscus acetosella ‘Panama Red’ Grown with a Soil Moisture Sensor-controlled Irrigation System. HortScience, 48, 980-987
https://doi.org/10.21273/HORTSCI.48.8.980
Costa Ana, Pôças Isabel, Cunha Mário (2016): Estimating the Leaf Area of Cut Roses in Different Growth Stages Using Image Processing and Allometrics. Horticulturae, 2, 6-
https://doi.org/10.3390/horticulturae2030006
Cunha Mário, Marçal André R. S., Silva Lisa (2010): Very early prediction of wine yield based on satellite data from VEGETATION. International Journal of Remote Sensing, 31, 3125-3142
https://doi.org/10.1080/01431160903154382
H. J. Farahani , T. A. Howell , W. J. Shuttleworth , W. C. Bausch (2007): Evapotranspiration: Progress in Measurement and Modeling in Agriculture. Transactions of the ASABE, 50, 1627-1638
https://doi.org/10.13031/2013.23965
Gavilán Pedro, Ruiz Natividad, Lozano David (2015): Daily forecasting of reference and strawberry crop evapotranspiration in greenhouses in a Mediterranean climate based on solar radiation estimates. Agricultural Water Management, 159, 307-317
https://doi.org/10.1016/j.agwat.2015.06.012
Harel Danny, Sofer Myron, Broner Moshe, Zohar Dovi, Gantz Shelly (2014): Growth-Stage-Specific Kc of Greenhouse Tomato Plants Grown in Semi-Arid Mediterranean Region. Journal of Agricultural Science, 6, -
https://doi.org/10.5539/jas.v6n11p132
Katsoulas N., Kittas C. (2011): Greenhouse crop transpiration modelling. In: Evapotranspiration – from Measurements to Agricultural and Environmental Applications. Croatia, InTech: 311–328.
Litago J., Baptista F.J., Meneses J.F., Navas L.M., Bailey B.J., Sánchez-Girón V. (2005): Statistical Modelling of the Microclimate in a Naturally Ventilated Greenhouse. Biosystems Engineering, 92, 365-381
https://doi.org/10.1016/j.biosystemseng.2005.07.015
Montero J.I., van Henten E.J., Son J.E., Castilla N. (2011): GREENHOUSE ENGINEERING: NEW TECHNOLOGIES AND APPROACHES. Acta Horticulturae, , 51-63
https://doi.org/10.17660/ActaHortic.2011.893.1
Montgomery D., Peck A. (1992): Introduction to linear regression analysis. New York, John Wiley and Sons USA.
Morille B., Migeon C., Bournet P.E. (2013): Is the Penman–Monteith model adapted to predict crop transpiration under greenhouse conditions? Application to a New Guinea Impatiens crop. Scientia Horticulturae, 152, 80-91
https://doi.org/10.1016/j.scienta.2013.01.010
Mpusia P. (2006): Comparison of water consumption between greenhouse and outdoor cultivation. [Master Thesis.] International Institute for Geo-information Science and Earth Observation in Netherlands: 1–75.
NSW (2009): Preventing pests and diseases in the greenhouse – Distribution uniformity of irrigation (Fact sheet). Available at http://www.dpi.nsw.gov.au/
Orgaz F., Fernández M.D., Bonachela S., Gallardo M., Fereres E. (2005): Evapotranspiration of horticultural crops in an unheated plastic greenhouse. Agricultural Water Management, 72, 81-96
https://doi.org/10.1016/j.agwat.2004.09.010
Raviv Michael, Blom Theo J. (2001): The effect of water availability and quality on photosynthesis and productivity of soilless-grown cut roses. Scientia Horticulturae, 88, 257-276
https://doi.org/10.1016/S0304-4238(00)00239-9
Stanghellini C. (1987): Transpiration of greenhouse crops: an aid to climate management. [Ph.D. Thesis.] Instituut voor Mechanisatie in Wageningen: 1–161.
Suay R., Martínez P.F., Roca D., Martínez M., Herrero J.M., Ramos C. (2003): MEASUREMENT AND ESTIMATION OF TRANSPIRATION OF A SOILLESS ROSE CROP AND APPLICATION TO IRRIGATION MANAGEMENT. Acta Horticulturae, , 625-630
https://doi.org/10.17660/ActaHortic.2003.614.93
Villarreal-Guerrero F., Kacira M., Fitz-Rodríguez E., Kubota C., Giacomelli G.A., Linker R., Arbel A. (2012): Comparison of three evapotranspiration models for a greenhouse cooling strategy with natural ventilation and variable high pressure fogging. Scientia Horticulturae, 134, 210-221
https://doi.org/10.1016/j.scienta.2011.10.016