Early seedling growth response of lettuce, tomato and cucumber to Azospirillum brasilense inoculated by soaking and drenching

https://doi.org/10.17221/159/2014-HORTSCICitation:Mangmang J.S., Deaker R., Rogers G. (2015): Early seedling growth response of lettuce, tomato and cucumber to Azospirillum brasilense inoculated by soaking and drenching. Hort. Sci. (Prague), 42: 37-46.
download PDF
This study evaluated the effects of three A. brasilense strains (i.e. Sp7, Sp7-S and Sp245) on the early seedling growth of lettuce, tomato and cucumber. Seeds were inoculated by soaking and drenching before and after sowing, respectively. Results show that inoculation effect varied greatly with plant species, inoculation methods and PGPR strains which could be dependent on inoculum concentration and IAA (indole-3-acetic acid) production. Generally, the magnitude of inoculation impact on the early growth of vegetables was more pronounced with Sp7-S, followed by Sp245 and Sp7. In particular, Sp7-S and Sp245 strongly enhanced root and shoot growth, germination value and vigour of tomato when inoculated by soaking. Sp245 increased the level of endogenous plant IAA of cucumber and lettuce. Despite the diverse crop responses to inoculation methods, soaking appeared to be a better technique, and majority of the strains demonstrated more consistent beneficial effects on tomato.
Abbass Z., Okon Y. (1993): Plant growth promotion by Azotobacter paspali in the rhizosphere. Soil Biology
& Biochemistry, 25: 1075–1083.
Ahmad F., Husain F.M., Ahmad I. (2011): Rhizosphere and root colonization by bacterial inoculants and their monitoring methods: a critical area in PGPR. In: Ahmad I., Ahmad F., Pichtel J. (eds): Microbes and Microbial Technology. New York, Springer.
Barassi C.A., Ayrault G., Creus C.M., Sueldo R.J., Sobrero M.T. (2006): Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Scientia Horticulturae, 109, 8-14  https://doi.org/10.1016/j.scienta.2006.02.025
Barassi C.A., Sueldo R.J., Creus C.M., Carrozzi L.E., Casanovas E.M., Pereyra M.A. (2007): Azospirillum spp., a dynamic soil bacterium favourable to vegetable crop production. Dynamic Soil, Dynamic Plant, 1: 68–82.
Barazani O., Friedman J. (1999): Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? Journal of Chemical Ecology, 25: 2397–2406.
Barbieri P, Galli E (1993): Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Research in Microbiology, 144, 69-75  https://doi.org/10.1016/0923-2508(93)90216-O
Bashan Yoav (1998): Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances, 16, 729-770  https://doi.org/10.1016/S0734-9750(98)00003-2
Bashan Yoav, Levanony Hanna (1990): Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Canadian Journal of Microbiology, 36, 591-608  https://doi.org/10.1139/m90-105
Bashan Yoav, Holguin Gina (1997): Azospirillum – plant relationships: environmental and physiological advances (1990–1996). Canadian Journal of Microbiology, 43, 103-121  https://doi.org/10.1139/m97-015
Bashan Y., Ream Y., Levanony Hanna, Sade A. (1989): Nonspecific responses in plant growth, yield, and root colonization of noncereal crop plants to inoculation with Azospirillum brasilense Cd. Canadian Journal of Botany, 67, 1317-1324  https://doi.org/10.1139/b89-175
Bashan Y., Holguin G., Lifshitz R. (1993): Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick B.R., Thompson J.E. (eds): Methods in Plant Molecular Biology and Biotechnology. Boca Raton, CRC Press.
Bashan Yoav, Hernandez Juan-Pablo, Leyva Luis, Bacilio Macario (2002): Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biology and Fertility of Soils, 35, 359-368  https://doi.org/10.1007/s00374-002-0481-5
Bashan Yoav, Holguin Gina, de-Bashan Luz E (2004): Azospirillum -plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Canadian Journal of Microbiology, 50, 521-577  https://doi.org/10.1139/w04-035
Bothe H., Korsgen H., Lehmacher T., Hundeshagen B. (1992): Differential effects of Azospirillum, auxin and combined nitrogen on the growth of the roots of wheat. Symbiosis (Rehovot), 13: 167–179.
Cassán Fabricio, Perrig Diego, Sgroy Verónica, Masciarelli Oscar, Penna Claudio, Luna Virginia (2009): Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, 45, 28-35  https://doi.org/10.1016/j.ejsobi.2008.08.005
Cassán F., Perrig D., Sgroy V., Luna V. (2011): Basic and technological aspects of phytohormone production by microorganisms: Azospirillum sp. as a model of plant growth promoting rhizobacteria. In: Maheshwari D.K. (ed.): Bacteria in Agrobiology: Plant Nutrient Management. Berlin-Heidelberg, Springer.
Chanway C. P., Nelson L. M., Holl F. B. (1988): Cultivar-specific growth promotion of spring wheat ( Triticum aestivum L.) by coexistent Bacillus species. Canadian Journal of Microbiology, 34, 925-929  https://doi.org/10.1139/m88-164
Djavanshir K., Pourbeik H. (1976): Germination value-a new formula. Silvae Genetica, 25: 79.
Dobbelaere S., Croonenborghs A., Thys A., Broek A.V., Vanderleyden J. (1999): Phytostimulatory effect of Azo-spirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant and Soil, 212: 155–164.  https://doi.org/10.1023/A:1004658000815
Dobbelaere S., Croonenborghs A., Thys A., Ptacek D., Vanderleyden J., Dutto P., Labandera-Gonzalez C., Caballero-Mellado J., Aguirre J.F., Kapulnik Y., (2001): Responses of agronomically important crops to inoculation with Azo-spirillum. Functional Plant Biology, 28: 871–879. https://doi.org/10.1071/PP01074
Dobbelaere Sofie, Croonenborghs Anja, Thys Amber, Ptacek David, Okon Yaacov, Vanderleyden Jos (2002): Effect of inoculation with wild type Azospirillum brasilense and A. irakense strains on development and nitrogen uptake of spring wheat and grain maize. Biology and Fertility of Soils, 36, 284-297  https://doi.org/10.1007/s00374-002-0534-9
Galli E., Barbieri P., Zanetti G. (1988): Recent developments and perspectives of Azospirillum-Gramineae association. The future of cereals for human feeding and development of biotechnological research. Proceedings of the 3rd International Symposium on Durum Wheat, Foggia, Italy, May 5–7, 1988: 335–342.
Gamalero Elisa, Berta Graziella, Massa Nadia, Glick Bernard R., Lingua Guido (2008): Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiology Ecology, 64, 459-467  https://doi.org/10.1111/j.1574-6941.2008.00485.x
Gholami A., Shahsavani S., Nezarat S. (2009): The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Proceedings of Word Academy of Science. Engineering and Technology, 37: 2070–3740.
Hadas Rivka, Okon Yaacov (1987): Effect of Azospirillum brasilense inoculation on root morphology and respiration in tomato seedlings. Biology and Fertility of Soils, 5, -  https://doi.org/10.1007/BF00256908
Harari Amalia, Kigel J., Okon Y. (1988): Involvement of IAA in the interaction betweenAzospirillum brasilense andPanicum miliaceum roots. Plant and Soil, 110, 275-282  https://doi.org/10.1007/BF02226808
Hartmann A., Baldani J. (2006): The genus Azospirillum: In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. (eds): The Prokaryotes. New York, Springer.
Jacoud Colette, Job Dominique, Wadoux Patrick, Bally René (1999): Initiation of root growth stimulation by <i>Azospirillum lipoferum</i> CRT1 during maize seed germination. Canadian Journal of Microbiology, 45, 339-342  https://doi.org/10.1139/cjm-45-4-339
Kucey R. (1988): Plant growth-altering effects of Azospirillum brasilense and Bacillus C–11–25 on two wheat cultivars. Journal of Applied Microbiology, 64: 187–196.
Levanony H., Bashan Y. (1989): Enhancement of cell-division in wheat root-tips and growth of root elongation zone induced by Azospirillum brasilense Cd. Canadian Journal of Botany-Revue Canadienne De Botanique, 67: 2213–2216.
Moghaddam M.J.M., Emtiazi G., Salehi Z. (2012): Enhanced auxin production by Azospirillum pure cultures from plant root exudates. Journal of Agricultural Science and Technology, 14: 985–994.
Morgenstern Ely, Okon Yaacov (1987): The effect of Azospirillum brasilense and auxin on root morphology in seedlings of Sorghum bicolor × Sorghum sudanense. Arid Soil Research and Rehabilitation, 1, 115-127  https://doi.org/10.1080/15324988709381135
Nezarat S., Gholami A. (2009): Screening Plant Growth Promoting Rhizobacteria for Improving Seed Germination, Seedling Growth and Yield of Maize. Pakistan Journal of Biological Sciences, 12, 26-32  https://doi.org/10.3923/pjbs.2009.26.32
Nowak J. (1998): Benefits of in vitro “biotization” of plant tissue cultures with microbial inoculants. In Vitro Cellular & Developmental Biology – Plant, 34: 122–130.
Okon Y., Kapulnik Y. (1986): Development and function ofAzospirillum-inoculated roots. Plant and Soil, 90, 3-16  https://doi.org/10.1007/BF02277383
Patten C. L., Glick B. R. (2002): Role of Pseudomonas putida Indoleacetic Acid in Development of the Host Plant Root System. Applied and Environmental Microbiology, 68, 3795-3801  https://doi.org/10.1128/AEM.68.8.3795-3801.2002
Pereira J. A. R., Cavalcante V. A., Baldani J. I., Döbereiner Johanna (1988): Field inoculation of sorghum and rice withAzospirillum spp. andHerbaspirillum seropedicae. Plant and Soil, 110, 269-274  https://doi.org/10.1007/BF02226807
Puente M.E., Bashan Y. (1993): Effect of inoculation with Azospirillum brasilense strains on the germination and seedlings growth of the giant columnar cardon cactus (Pachycereus pringlei). Symbiosis (Rehovot), 15: 49–60.
Raj S.Niranjan, Deepak S.A., Basavaraju P., Shetty H.S., Reddy M.S., Kloepper Joseph W. (2003): Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Protection, 22, 579-588  https://doi.org/10.1016/S0261-2194(02)00222-3
Reed M L.E, Glick Bernard R (2005): Growth of canola ( Brassica napus ) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Canadian Journal of Microbiology, 51, 1061-1069  https://doi.org/10.1139/w05-094
Reyes I., Alvarez L., El-Ayoubi H., Valery A. (2008): Selection and evaluation of growth promoting rhizobacteria on pepper and maize. Bioagro, 20: 37–48.
Ribaudo Claudia M., Krumpholz Evelyn M., Cassán Fabricio D., Bottini Rubén, Cantore María L., Curá José A. (2006): Azospirillum sp. Promotes Root Hair Development in Tomato Plants through a Mechanism that Involves Ethylene. Journal of Plant Growth Regulation, 25, 175-185  https://doi.org/10.1007/s00344-005-0128-5
Rodriguez M., Villalonga R., Castillo R., Marques A., Gonzalez L., Llanes S., Peguero F. (2001): Influence of application of a biofertilizer based on Azospirillum on germination of seed and production of vegetable crops. Centro Agricola, 28: 38–41.
Saleh-Lakha S., Glick B. (2006): Plant growth-promoting bacteria. In: van Elsas J.D., Jansson J.K., Trevors J.T. (eds): Modern Soil Microbiology. New York, CRC Press.
Schloter M., Hartmann A. (1998): Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain-specific monoclonal antibodies. Symbiosis (Rehovot), 25: 159–179.
Taiz L., Zeiger E. (2010): Plant Physiology. Sunderland, Sinauer Associates, Inc.
Thuler D.S., Floh E.I.S., Handro W., Barbosa H.R. (2003): Plant growth regulators and amino acids released by Azospirillum sp. in chemically defined media. Letters in Applied Microbiology, 37, 174-178  https://doi.org/10.1046/j.1472-765X.2003.01373.x
Umali-Garcia M., Hubbell D.H., Gaskins M.H., Dazzo F.B. (1980): Association of Azospirillum with grass roots. Applied and Environmental Microbiology, 39: 219–226.
Vessey J.K. (2003): Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255: 571–586. https://doi.org/10.1023/A:1026037216893
. A. Vikram, . H. Hamzehzarghani, . A.R. Alagawadi, . P.U. Krishnaraj, . B.S. Chandrashekar (2007): Production of Plant Growth Promoting Substances by Phosphate Solubilizing Bacteria Isolated from Vertisols. Journal of Plant Sciences, 2, 326-333  https://doi.org/10.3923/jps.2007.326.333
Walker R., Rossall S., Asher M.J.C. (2004): Comparison of application methods to prolong the survival of potential biocontrol bacteria on stored sugar-beet seed. Journal of Applied Microbiology, 97, 293-305  https://doi.org/10.1111/j.1365-2672.2004.02318.x
Whipps J.M. (1997): Ecological considerations involved in commercial development of biological control agents for soil-borne diseases. In: Elsas J. D.V., Trevors J.T., Wellington E.M.H. (eds): Modern Soil Microbiology. New York, Marcel Dekker.
Zahir Z.A., Muhammad A., Frankenberger W.T. Jr. (2003): Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Advances in Agronomy, 81: 97–168.
Zimmer W., Roeben K., Bothe H. (1988): An alternative explanation for plant growth promotion by bacteria of the genus Azospirillum. Planta, 176, 333-342  https://doi.org/10.1007/BF00395413
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti