Effect of mycorrhizal inoculation of leek Allium porrum L. on mineral nitrogen leaching

https://doi.org/10.17221/182/2015-HORTSCICitation:Kučová L., Záhora J., Pokluda R. (2016): Effect of mycorrhizal inoculation of leek Allium porrum L. on mineral nitrogen leaching. Hort. Sci. (Prague), 43: 195-202.
download PDF
This study evaluated the influence of the arbuscular mycorrhizal fungi (AMF) inoculation of leek (Allium porrum L.) on the leaching of ammonia and nitrate nitrogen from the experimental pots filled with either sterile or non-sterile soil mix, consisting equally of the arable soil and horticultural substrate. Leek plants were inoculated by Funneliformis mosseae, Claroideoglomus claroideum, Rhizophagus intraradices and by their combinations. Based on the obtained data, it can be concluded that: (a) the influence of AMF on nitrate leaching does not follow some simple rules, (b) the amounts of percolating nitrates can be affected also by sterilization and by the combination of AMF inocula, (c) AMF can, in general, reduce the nitrate leaching from soil even though mycorrhizal colonization of roots did not achieve extremely high rates. These conclusions may be useful in the horticultural practice and ecological sustainability of the soil quality.
References:
Asghari H.R., Cavagnaro T.R. (2012): Arbuscular mycorrhizas reduce nitrogen loss via leaching. In: M. Moora, (ed.) PloS one, 7.
 
Bender S. Franz, Conen Franz, Van der Heijden Marcel G.A. (2015): Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biology and Biochemistry, 80, 283-292  https://doi.org/10.1016/j.soilbio.2014.10.016
 
Binkley Dan, Matson Pamela (1983): Ion Exchange Resin Bag Method for Assessing Forest Soil Nitrogen Availability1. Soil Science Society of America Journal, 47, 1050-  https://doi.org/10.2136/sssaj1983.03615995004700050045x
 
Burger Martin, Jackson Louise E (2003): Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biology and Biochemistry, 35, 29-36  https://doi.org/10.1016/S0038-0717(02)00233-X
 
Cosme Marco, Wurst Susanne (2013): Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biology and Biochemistry, 57, 436-443  https://doi.org/10.1016/j.soilbio.2012.09.024
 
Fatima Z., Zia M., Chaudhary M. (2006): Effect of Rhizobium strains and phosphorus on growth of soybean Glycine max and survival of Rhizobium and P solubilizing bacteria. Pakistan Journal of Botany, 38: 459–464.
 
Gabriel J.L., Muñoz-Carpena R., Quemada M. (2012): The role of cover crops in irrigated systems: Water balance, nitrate leaching and soil mineral nitrogen accumulation. Agriculture, Ecosystems & Environment, 155: 50–61.
 
GIOVANNETTI M., MOSSE B. (1980): AN EVALUATION OF TECHNIQUES FOR MEASURING VESICULAR ARBUSCULAR MYCORRHIZAL INFECTION IN ROOTS. New Phytologist, 84, 489-500  https://doi.org/10.1111/j.1469-8137.1980.tb04556.x
 
van der Heijden Marcel G. A., Martin Francis M., Selosse Marc-André, Sanders Ian R. (2015): Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205, 1406-1423  https://doi.org/10.1111/nph.13288
 
Irshad U., Villenave C., Brauman A., Khan S.A., Shafinq S., Plassard C. (2013): Nitrogen and phosphorus flow stimulated by bacterial grazer nematodes in mycorrhizosphere of pinus pinaster. International Journal of Agriculture and Biology, 15: 1265‒1271.
 
Jégo G., Sánchez-Pérez J.M., Justes E. (2012): Predicting soil water and mineral nitrogen contents with the STICS model for estimating nitrate leaching under agricultural fields. Agricultural Water Management, 107, 54-65  https://doi.org/10.1016/j.agwat.2012.01.007
 
Johnson J.O., Reuss D.W. (1986): Acid deposition and the acidification of soils and waters. Journal of Environment Quality, 17: 514.
 
Kuzyakov Yakov, Xu Xingliang (2013): Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist, 198, 656-669  https://doi.org/10.1111/nph.12235
 
Martínez-Medina Ainhoa, Roldán Antonio, Pascual Jose A. (2011): Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: Growth response and Fusarium wilt biocontrol. Applied Soil Ecology, 47, 98-105  https://doi.org/10.1016/j.apsoil.2010.11.010
 
Matsumura Atsushi, Taniguchi Shinji, Yamawaki Kenji, Hattori Rintaro, Tarui Arata, Yano Katsuya, Daimon Hiroyuki (2013): Nitrogen Uptake from Amino Acids in Maize through Arbuscular Mycorrhizal Symbiosis. American Journal of Plant Sciences, 04, 2290-2294  https://doi.org/10.4236/ajps.2013.412283
 
Neumann Angelika, Torstensson Gunnar, Aronsson Helena (2012): Nitrogen and phosphorus leaching losses from potatoes with different harvest times and following crops. Field Crops Research, 133, 130-138  https://doi.org/10.1016/j.fcr.2012.03.011
 
Oztekin G.B., Tuzel Y. , Tuzel I.H. (2013): Does mycorrhiza improve salinity tolerance in grafted plants? Scientia Horticulturae, 149: 55–60.
 
Parniske M. (2008): Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews. Microbiology, 6: 763–75.
 
Phillips J.M., Hayman D.S. (1970): Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158-IN18  https://doi.org/10.1016/S0007-1536(70)80110-3
 
Plošek L., Hynšt J., Záhora J., Elbl J., Kyntl A., Charousová I., Kovácsová S. (2014): Mineral nitrogen retention, nitrogen availability and plant growth in the soil influenced by addition of organic and mineral fertilizers – lysimetric experiment. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 8: 827–831.
 
Schimel Joshua P., Bennett Jennifer (2004): NITROGEN MINERALIZATION: CHALLENGES OF A CHANGING PARADIGM. Ecology, 85, 591-602  https://doi.org/10.1890/03-8002
 
Schüßler A.W.C. (2010): The Glomeromycota. A specieslist with new families and new genera. Royal Botanic Garden Edinburgh.
 
Smith S.E., Read D.J. (1997): Mycorrhizal Symbiosis. 2nd Ed., Amsterodam, Elsevier.
 
Smith S.E., Read D.J. (2008): Mycorrhizal Symbiosis. 3rd Ed.., Amsterodam, Elsevier.
 
Tajini Fatma, Trabelsi Mustapha, Drevon Jean-Jacques (2012): Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi Journal of Biological Sciences, 19, 157-163  https://doi.org/10.1016/j.sjbs.2011.11.003
 
Tian C., Kasiborski B., Koul R., Lammers P. J., Bucking H., Shachar-Hill Y. (): Regulation of the Nitrogen Transfer Pathway in the Arbuscular Mycorrhizal Symbiosis: Gene Characterization and the Coordination of Expression with Nitrogen Flux. PLANT PHYSIOLOGY, 153, 1175-1187  https://doi.org/10.1104/pp.110.156430
 
Veresoglou Stavros D., Chen Baodong, Rillig Matthias C. (2012): Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry, 46, 53-62  https://doi.org/10.1016/j.soilbio.2011.11.018
 
Asghari H.R., Cavagnaro T.R. (2012): Arbuscular mycorrhizas reduce nitrogen loss via leaching. In: M. Moora, (ed.) PloS one, 7.
 
Bender S. Franz, Conen Franz, Van der Heijden Marcel G.A. (2015): Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biology and Biochemistry, 80, 283-292  https://doi.org/10.1016/j.soilbio.2014.10.016
 
Binkley Dan, Matson Pamela (1983): Ion Exchange Resin Bag Method for Assessing Forest Soil Nitrogen Availability1. Soil Science Society of America Journal, 47, 1050-  https://doi.org/10.2136/sssaj1983.03615995004700050045x
 
Burger Martin, Jackson Louise E (2003): Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biology and Biochemistry, 35, 29-36  https://doi.org/10.1016/S0038-0717(02)00233-X
 
Cosme Marco, Wurst Susanne (2013): Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biology and Biochemistry, 57, 436-443  https://doi.org/10.1016/j.soilbio.2012.09.024
 
Fatima Z., Zia M., Chaudhary M. (2006): Effect of Rhizobium strains and phosphorus on growth of soybean Glycine max and survival of Rhizobium and P solubilizing bacteria. Pakistan Journal of Botany, 38: 459–464.
 
Gabriel J.L., Muñoz-Carpena R., Quemada M. (2012): The role of cover crops in irrigated systems: Water balance, nitrate leaching and soil mineral nitrogen accumulation. Agriculture, Ecosystems & Environment, 155: 50–61.
 
GIOVANNETTI M., MOSSE B. (1980): AN EVALUATION OF TECHNIQUES FOR MEASURING VESICULAR ARBUSCULAR MYCORRHIZAL INFECTION IN ROOTS. New Phytologist, 84, 489-500  https://doi.org/10.1111/j.1469-8137.1980.tb04556.x
 
van der Heijden Marcel G. A., Martin Francis M., Selosse Marc-André, Sanders Ian R. (2015): Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 205, 1406-1423  https://doi.org/10.1111/nph.13288
 
Irshad U., Villenave C., Brauman A., Khan S.A., Shafinq S., Plassard C. (2013): Nitrogen and phosphorus flow stimulated by bacterial grazer nematodes in mycorrhizosphere of pinus pinaster. International Journal of Agriculture and Biology, 15: 1265‒1271.
 
Jégo G., Sánchez-Pérez J.M., Justes E. (2012): Predicting soil water and mineral nitrogen contents with the STICS model for estimating nitrate leaching under agricultural fields. Agricultural Water Management, 107, 54-65  https://doi.org/10.1016/j.agwat.2012.01.007
 
Johnson J.O., Reuss D.W. (1986): Acid deposition and the acidification of soils and waters. Journal of Environment Quality, 17: 514.
 
Kuzyakov Yakov, Xu Xingliang (2013): Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist, 198, 656-669  https://doi.org/10.1111/nph.12235
 
Martínez-Medina Ainhoa, Roldán Antonio, Pascual Jose A. (2011): Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: Growth response and Fusarium wilt biocontrol. Applied Soil Ecology, 47, 98-105  https://doi.org/10.1016/j.apsoil.2010.11.010
 
Matsumura Atsushi, Taniguchi Shinji, Yamawaki Kenji, Hattori Rintaro, Tarui Arata, Yano Katsuya, Daimon Hiroyuki (2013): Nitrogen Uptake from Amino Acids in Maize through Arbuscular Mycorrhizal Symbiosis. American Journal of Plant Sciences, 04, 2290-2294  https://doi.org/10.4236/ajps.2013.412283
 
Neumann Angelika, Torstensson Gunnar, Aronsson Helena (2012): Nitrogen and phosphorus leaching losses from potatoes with different harvest times and following crops. Field Crops Research, 133, 130-138  https://doi.org/10.1016/j.fcr.2012.03.011
 
Oztekin G.B., Tuzel Y. , Tuzel I.H. (2013): Does mycorrhiza improve salinity tolerance in grafted plants? Scientia Horticulturae, 149: 55–60.
 
Parniske M. (2008): Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews. Microbiology, 6: 763–75.
 
Phillips J.M., Hayman D.S. (1970): Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158-IN18  https://doi.org/10.1016/S0007-1536(70)80110-3
 
Plošek L., Hynšt J., Záhora J., Elbl J., Kyntl A., Charousová I., Kovácsová S. (2014): Mineral nitrogen retention, nitrogen availability and plant growth in the soil influenced by addition of organic and mineral fertilizers – lysimetric experiment. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 8: 827–831.
 
Schimel Joshua P., Bennett Jennifer (2004): NITROGEN MINERALIZATION: CHALLENGES OF A CHANGING PARADIGM. Ecology, 85, 591-602  https://doi.org/10.1890/03-8002
 
Schüßler A.W.C. (2010): The Glomeromycota. A specieslist with new families and new genera. Royal Botanic Garden Edinburgh.
 
Smith S.E., Read D.J. (1997): Mycorrhizal Symbiosis. 2nd Ed., Amsterodam, Elsevier.
 
Smith S.E., Read D.J. (2008): Mycorrhizal Symbiosis. 3rd Ed.., Amsterodam, Elsevier.
 
Tajini Fatma, Trabelsi Mustapha, Drevon Jean-Jacques (2012): Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi Journal of Biological Sciences, 19, 157-163  https://doi.org/10.1016/j.sjbs.2011.11.003
 
Tian C., Kasiborski B., Koul R., Lammers P. J., Bucking H., Shachar-Hill Y. (): Regulation of the Nitrogen Transfer Pathway in the Arbuscular Mycorrhizal Symbiosis: Gene Characterization and the Coordination of Expression with Nitrogen Flux. PLANT PHYSIOLOGY, 153, 1175-1187  https://doi.org/10.1104/pp.110.156430
 
Veresoglou Stavros D., Chen Baodong, Rillig Matthias C. (2012): Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry, 46, 53-62  https://doi.org/10.1016/j.soilbio.2011.11.018
 
download PDF

© 2020 Czech Academy of Agricultural Sciences