Content of trans-resveratrol, trans-ε-viniferin and trans-δ-viniferin in young spring grapevine canes – the influence of samples drying

Vrchotová N., Tříska J., Střalková R., Horník Š., Sýkora J., Balík J., Soural I., Toupal L., Sotolář R. (2022): Content of trans-resveratrol, trans-ε-viniferin and trans-δ-viniferin in young spring grapevine canes – the influence of samples drying. Hort. Sci. (Prague), 49: 179–188.

download PDF

The main objective was to study the effect of sample preparation on the content of trans-resveratrol, trans-ε-viniferin and trans-δ-viniferin in young spring grapevine canes. The samples of six varieties of Vitis vinifera L. (‘Hibernal’, ‘Malverina’, ‘Kolor’, ‘Fioletovij Augustovskij’, ‘Grüner Veltliner’ and ‘Blaufränkisch’) were either lyophilised or slow dried at room temperature (three months), extracted and analysed by HPLC using DAD and FLD detectors and by LC-MS. The presence of trans-δ-viniferin was confirmed by comparison with trans-δ-viniferin prepared by dimerization of trans-resveratrol using laccase and its structure was verified by LC-NMR. The slow drying of the samples at room temperature enables the synthesis of a significant amount of stilbenes in all the studied varieties of V. vinifera canes resulting in a higher stilbene content compared to the lyophilised samples. The results of this study show the importance of the method of drying the cane sample before the extraction and analysis.

Bábíková P., Vrchotová N., Tříska J., Kyseláková M. (2008): Content of trans-resveratrol in leaves and berries of interspecific grapevine (Vitis sp.) varieties. Czech Journal of Food Sciences (Special Issue), 26: 13–17.
Balík J., Kyseláková M., Tříska J., Vrchotová N., Veverka J., Híc P., Totušek J., Lefnerová D. (2008): The changes of selected phenolic substances in wine technology. Czech Journal of Food Sciences (Special Issue), 26: 3–12.
Balík J. (2021): Faculty of Horticulture, Mendel University in Brno, Lednice, Czech Republic, Personal communication.
Bhusainahalli V.M., Spatafora C., Chalal M., Vervandier-Fasseur D., Menuier P., Latruffe N., Triangali C. (2012): Resveratrol-related dehydrodimers: Laccase-mediated biomimetic synthesis and antiproliferative activity. European Journal of Organic Chemistry, 27: 5217–5224.
Boso S., Alonso-Villaverde V., Martínez M.C., Kassemeyer H.H. (2012): Quatification of stilbenes in Vitis genotypes with different levels of resistance to Plasmopara viticola infection. American Journal of Enology and Viticulture, 63: 419–429.
Cebrián C., Sánchez-Gómez R., Salinas M.R., Alonso G.L., Zalacain A. (2017): Effect of post-pruning vine-shoots storage on the evolution of high-value compounds. Industrial Crops and Products, 109: 730–736.
Choi C.W., Choi Y.H., Cha M.-R., Yoo D.S., Kim Y.S., Yon G.H, Choi S.U., Kim Y.H., Ryu S.Y. (2010): A new glycoside of resveratrol dimer from stem bark of Vitis vinifera. Bulletin of the Korean Chemical Society, 31: 3448–3450.
Flamini R., De Rosso M., Bavaresco L. (2015): Study of grape polyphenols by liquid chromatography-high-resolution mass spectrometry (UHPLC/QTOF) and suspect screening analysis. Journal of Analytical Methods in Chemistry, 10, ID 350259.
Gabaston J., Leborgne C., Waffo-Teguo P., Valls J., Pinto A.P., Richard T., Cluzet S., Mérillon J.M. (2018): Wood and roots of major grapevine cultivars and rootstocks: A comparative analysis of stilbenes by UHPLC-DAD-MS/MS and NMR. Phytochemical Analysis, 30: 320–331.
Gavezzotti P., Bertacchi F., Fronza G., Křen V., Monti D., Riva S. (2015): Laccase-catalyzed dimerization of piceid, a resveratrol glucoside, and its further enzymatic elaboration. Advanced Synthesis and Catalysis, 357: 1831–1839.
González-Barrio R., Beltrán D., Cantos E., Gil M.I., Espín J.C., Tomás-Barberán F.A. (2006): Comparison of ozone and UV-C treatment on the postharvest stilbenoid monomer, dimer, and trimer induction in var. „Superior“ white table grapes. Journal of Agricultural and Food Chemistry, 54: 4222–4228.
Gorena T., Saez V., Mardones C., Vergara C., Winterhalter P., von Baer D. (2014): Influence of post-pruning storage on stilbenoid levels in Vitis vinifera L. canes. Food Chemistry, 155: 256–263.
Goufo P., Singh R.K., Cortez I. (2020): A reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems and leaves. Antioxidants, 9: 398.
Guerrero R.F., Aliaño-Gonzáles M.J., Puertas B., Richard T., Cantos-Villar E. (2020): Comparative analysis of stilbene concentration in grapevine shoots of thirteen Vitis during a three-year study. Industrial Crops & Products, 156: 112852.
Huang K. S., Wang Y. H., Li R. L., Lin M. (2000): Five new stilbene dimers from the Lianas of Gnetum hainanense. Journal of Natural Products, 63: 86–89.
Jean-Denis J.B., Pezet R., Tabacchi R. (2006): Rapid analysis of stilbenes and derivatives from downy mildew-infected grapevine leaves by liquid chromatography–atmospheric pressure photoionisation mass spectrometry. Journal of Chromatography A, 1112: 263–268.
Landfeld A., Tříska J., Balík J., Strohalm J., Novotná P., Vrchotová N., Totušek J., Lefnerová D., Híc P., Tománková E., Halama R., Houška M. (2015): Influence of UV and ozonised water treatment on trans-resveratrol content in berry skins and juices of Franc and Green Veltliner grapes. Czech Journal of Food Sciences, 33: 267–276.
Langcake P., Pryce R.J. (1976): The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiological Plant Pathology, 9: 77–86.
Langcake P., Pryce R.J. (1977a): The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry, 16: 1193–1196.
Langcake P., Pryce R.J. (1977b): A new class of phytoalexins from grapevines. Experientia, 32: 151–152.
Lippi G., Franchini M., Guidi G.C. (2010): Red wine and cardiovascular health: the “French Paradox” revisited. International Journal of Wine Research, 2: 1–7.
Mattio L.M. , Dallavalle S., Musso L., Filardi R, Franzetti L., Pellegrino L., D’Incecco P., Mora D., Pinto A., Arioli S. (2019): Antimicrobial activity of resveratrol-derived monomers and dimers against foodborne pathogens. Scientific Reports, 9: 1–13.
Mestrelab Research S.L., Spain, NMR program MestReNova, Version 11.0.0-17609. Available at (Accessed on 11 March 2019).
Pezet R., Perret C., Jean-Denis J.B., Tabacchi R., Gindro K., Viret O. (2003): δ-viniferin, a resveratrol dehydrodimer: One of the major stilbenes synthesized by stressed grapevine leaves. Journal of Agricultural and Food Chemistry, 51: 5488–5492.
Piñeiro Z., Marrufo-Curtido A., Serrano M.J., Palma M. (2016): Ultrasound-assisted extraction of stilbenes from grape canes. Molecules, 21: 784.
Rätsep R., Karp K., Maante-Kuljus M., Aluvee A., Kaldmäe H., Bhat R. (2021): Recovery of polyphenols from vineyard pruning wastes – shoots and cane of hybrid grapevine (Vitis sp.) cultivars. Antioxidants, 10: 1059.
Rayne S., Karacabey E., Mazza G. (2008): Grape cane waste as a source of trans-resveratrol and trans-viniferin: High-value phytochemicals with medicinal and anti-phytopathogenic applications. Industrial Crops and Products, 27: 335–340.
Rivière C., Pawlus A.D., Mérillon J.M. (2012): Natural stilbenoids: distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Natural Product Reports, 29: 1317–1333.
Sáez V., Gayoso C., Riquelme S., Pérez J., Vergara C., Mardones C., von Baer D. (2018): C18 core-shell column with in-series absorbance and fluorescence detection for simultaneous monitoring of changes in stilbenoid and proanthocyanidin concentrations during grape cane storage. Journal of Chromatography B, 1074–1075: 70–78.
Smallcombe S.H., Patt S.L., Keifer P.A. (1995): WET solvent suppression and its applications to LC NMR and high-resolution NMR spectroscopy. Journal of Magnetic Resonance A, 117: 295–303.
Soural I., Vrchotová N., Tříska J., Balík J., Horník Š., Cuřínová P., Sýkora J. (2015): Various extraction methods for obtaining stilbenes from grape cane of Vitis vinifera L. Molecules, 20: 6093–6112.
Timperio A.M., D’Alessandro A., Fagioni M., Magro P., Zolla L. (2012): Production of the phytoalexins trans-resveratrol and delta-viniferin in two economy-relevant grape cultivars upon infection with Botrytis cinerea in field conditions. Plant Physiology and Biochemistry, 50: 65–71.
Tříska J., Vrchotová N., Balík J., Soural I., Sotolář R. (2017): Variability in the content of trans-resveratrol, trans-δ-viniferin and r2-viniferin in grape cane of seven Vitis vinifera L. varieties during a three-year study. Molecules, 22: 928.
Vergara C., von Baer D., Mardones C., Wilkens A., Wernekinck K., Damm A., Macke S., Gorena T., Winterhalter P. (2012): Stilbene levels in grape cane of different cultivars in Southern Chile: Determination by HPLC-DAD-MS/MS method. Journal of Agricultural and Food Chemistry, 60: 929−933.
Vitrac X., Bornet A., Vanderlinde R., Valls J., Richard T., Delaunay J.C., Mérillon J.M., Teissédre P.L. (2005): Determination of stilbenes (δ-viniferin, trans-astringin, trans-piceid, cis- and trans-resveratrol, trans-ε-viniferin) in Brazilian wines. Journal of Agricultural and Food Chemistry, 53: 5664–5669.
Wang W., Tang K., Yang H.R., Wen P.-F., Zhang P., Wang H.L., Huang W.D. (2010): Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. ‘Cabernet Sauvignon’) and the effect of UV-C on its accumulation. Plant Physiology and Biochemistry, 48: 142–152.
Zhang A., Fang Y., Li X., Meng J., Wang H., Li H., Zhang Z., Guo Z. (2011): Occurrence and estimation of trans-resveratrol in one-year-old canes from seven major Chinese grape producing regions. Molecules, 16: 2846–2861.
Zhang C.C., Geng C.A., Chen J.J. (2019): A fragmentation study on four oligostilbenes by electrospray tandem mass spectrometry. Natural Products and Bioprospecting, 9: 279–286.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti