Ahmad Margaret, Cashmore Anthony R. (1993): HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature, 366, 162-166
https://doi.org/10.1038/366162a0
Aruoma O. I., Halliwell B., Aeschbach R., Löligers J. (2008): Antioxidant and pro-oxidant properties of active rosemary constituents: carnosol and carnosic acid. Xenobiotica, 22, 257-268
https://doi.org/10.3109/00498259209046624
Bantis Filippos, Ouzounis Theoharis, Radoglou Kalliopi (2016): Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum , but variably affects transplant success. Scientia Horticulturae, 198, 277-283
https://doi.org/10.1016/j.scienta.2015.11.014
BANTIS Filippos, RADOGLOU Kalliopi (2017): Morphology, development, and transplant potential of Prunus aviumand Cornus sanguinea seedlings growing under different LED lights. TURKISH JOURNAL OF BIOLOGY, 41, 314-321
https://doi.org/10.3906/biy-1607-19
Bantis Filippos, Smirnakou Sonia, Ouzounis Theoharis, Koukounaras Athanasios, Ntagkas Nikolaos, Radoglou Kalliopi (2018): Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia Horticulturae, 235, 437-451
https://doi.org/10.1016/j.scienta.2018.02.058
Bentsink Leónie, Koornneef Maarten (2008): Seed Dormancy and Germination. The Arabidopsis Book, 6, e0119-
https://doi.org/10.1199/tab.0119
Bourget C. Michael (2008): An Introduction to Light-emitting Diodes. HortScience, 43, 1944-1946
https://doi.org/10.21273/HORTSCI.43.7.1944
Carvalho Sofia D, Folta Kevin M (2014): Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content. Horticulture Research, 1, -
https://doi.org/10.1038/hortres.2014.8
Casal Jorge J. (2012): Shade Avoidance. The Arabidopsis Book, 10, e0157-
https://doi.org/10.1199/tab.0157
Casal Jorge J. (2013): Photoreceptor Signaling Networks in Plant Responses to Shade. Annual Review of Plant Biology, 64, 403-427
https://doi.org/10.1146/annurev-arplant-050312-120221
Ceylan A. (1987): Medicinal Plant II. (Essential oil plants). Aegean University Agricultural Faculty publications, No: 481. (in Turkish)
Chen Meng, Chory Joanne (2011): Phytochrome signaling mechanisms and the control of plant development. Trends in Cell Biology, 21, 664-671
https://doi.org/10.1016/j.tcb.2011.07.002
Chen Xiao-li, Xue Xu-zhang, Guo Wen-zhong, Wang Li-chun, Qiao Xiao-jun (2016): Growth and nutritional properties of lettuce affected by mixed irradiation of white and supplemental light provided by light-emitting diode. Scientia Horticulturae, 200, 111-118
https://doi.org/10.1016/j.scienta.2016.01.007
Christie John M. (2007): Phototropin Blue-Light Receptors. Annual Review of Plant Biology, 58, 21-45
https://doi.org/10.1146/annurev.arplant.58.032806.103951
COOKSON SARAH JANE, GRANIER CHRISTINE (2006): A Dynamic Analysis of the Shade-induced Plasticity in Arabidopsis thaliana Rosette Leaf Development Reveals New Components of the Shade-adaptative Response. Annals of Botany, 97, 443-452
https://doi.org/10.1093/aob/mcj047
Cuvelier Marie Elisabeth, Berset Claudette, Richard Hubert (1994): Antioxidant Constituents in Sage (Salvia officinalis). Journal of Agricultural and Food Chemistry, 42, 665-669
https://doi.org/10.1021/jf00039a012
Das N. P., Pereira T. A. (1990): Effects of flavonoids on thermal autoxidation of palm oil: Structure-activity relationships. Journal of the American Oil Chemists' Society, 67, 255-258
https://doi.org/10.1007/BF02540652
Davis Phillip A., Burns Claire (2016): Photobiology in protected horticulture. Food and Energy Security, 5, 223-238
https://doi.org/10.1002/fes3.97
de Carbonnel Matthieu, Davis Phillip, Roelfsema M. Rob G., Inoue Shin-ichiro, Schepens Isabelle, Lariguet Patricia, Geisler Markus, Shimazaki Ken-ichiro, Hangarter Roger, Fankhauser Christian (2010): The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 Protein Is a Phototropin Signaling Element That Regulates Leaf Flattening and Leaf Positioning. Plant Physiology, 152, 1391-1405
https://doi.org/10.1104/pp.109.150441
Demotes-Mainard Sabine, Péron Thomas, Corot Adrien, Bertheloot Jessica, Le Gourrierec José, Pelleschi-Travier Sandrine, Crespel Laurent, Morel Philippe, Huché-Thélier Lydie, Boumaza Rachid, Vian Alain, Guérin Vincent, Leduc Nathalie, Sakr Soulaiman (2016): Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany, 121, 4-21
https://doi.org/10.1016/j.envexpbot.2015.05.010
Dougher Tracy A.O., Bugbee Bruce (2004): Long-term Blue Light Effects on the Histology of Lettuce and Soybean Leaves and Stems. Journal of the American Society for Horticultural Science, 129, 467-472
https://doi.org/10.21273/JASHS.129.4.0467
Fan XiaoXue, Zang Jie, Xu ZhiGang, Guo ShiRong, Jiao XueLei, Liu XiaoYing, Gao Ying (2013): Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris L.). Acta Physiologiae Plantarum, 35, 2721-2726
https://doi.org/10.1007/s11738-013-1304-z
Folta Kevin M., Lieg Erin J., Durham Tessa, Spalding Edgar P. (2003): Primary Inhibition of Hypocotyl Growth and Phototropism Depend Differently on Phototropin-Mediated Increases in Cytoplasmic Calcium Induced by Blue Light. Plant Physiology, 133, 1464-1470
https://doi.org/10.1104/pp.103.024372
Franklin Keara A. (2008): Shade avoidance. New Phytologist, 179, 930-944
https://doi.org/10.1111/j.1469-8137.2008.02507.x
Fraszczak B., Golcz A., Zawirska-Wojtasiak R., Janowska B. (2014): Growth rate of sweet basil and lemon balm plants grown under fluorescent lamps and LED modules. Acta Scientiarum Polonorum, 13: 3–13.
Goins G.D., Yorio N.C., Sanwo-Lewandowski M.M., Brown C.S. (1998): Life Cycle experiments with Arabidopsis grown under red light-emitting diodes (LEDs). Life Support and Biosphere Science, 52: 143–149.
Gupta D. (2017): Light Emitting Diodes for Agriculture. Springer, Singapore. CrossRef
Hemphill J., Hemphill R. (1990): Herbs: their cultivation and usage. Blandford Press, London.
Hernández R., Kubota C. (2016): Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany, 121, 66-74
https://doi.org/10.1016/j.envexpbot.2015.04.001
Hogewoning S. W., Trouwborst G., Maljaars H., Poorter H., van Ieperen W., Harbinson J. (2010): Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 61, 3107-3117
https://doi.org/10.1093/jxb/erq132
Hoenecke M.E., Bula R.J., Tibbitts T.W. (1992): Importance of `Blue' Photon Levels for Lettuce Seedlings Grown under Red-light-emitting Diodes. HortScience, 27, 427-430
https://doi.org/10.21273/HORTSCI.27.5.427
Huché-Thélier Lydie, Crespel Laurent, Gourrierec José Le, Morel Philippe, Sakr Soulaiman, Leduc Nathalie (2016): Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environmental and Experimental Botany, 121, 22-38
https://doi.org/10.1016/j.envexpbot.2015.06.009
Jenkins Gareth I. (2014): The UV-B Photoreceptor UVR8: From Structure to Physiology. The Plant Cell, 26, 21-37
https://doi.org/10.1105/tpc.113.119446
Johkan Masahumi, Shoji Kazuhiro, Goto Fumiyuki, Hashida Shin-nosuke, Yoshihara Toshihiro (2010): Blue Light-emitting Diode Light Irradiation of Seedlings Improves Seedling Quality and Growth after Transplanting in Red Leaf Lettuce. HortScience, 45, 1809-1814
https://doi.org/10.21273/HORTSCI.45.12.1809
Kami C., Lorrain S., Hornitschek P., Fankhauser C. (2010): Light-regulated plant growth and development. Current Topics in Developmental Biology, 91: 29–66.
Kopsell Dean A., Sams Carl E. (2013): Increases in Shoot Tissue Pigments, Glucosinolates, and Mineral Elements in Sprouting Broccoli after Exposure to Short-duration Blue Light from Light Emitting Diodes. Journal of the American Society for Horticultural Science, 138, 31-37
https://doi.org/10.21273/JASHS.138.1.31
Kopsell Dean A., Kopsell David E., Lefsrud Mark G., Curran-Celentano Joanne, Dukach Laura E. (2004): Variation in Lutein, β-carotene, and Chlorophyll Concentrations among Brassica oleracea Cultigens and Seasons. HortScience, 39, 361-364
https://doi.org/10.21273/HORTSCI.39.2.361
Kostopoulou Panagiota, Dini-Papanastasi Olympia, Radoglou Kalliopi (2010): Density and substrate effects on morphological and physiological parameters of plant stock material of four forest species grown in mini-plugs. Scandinavian Journal of Forest Research, 25, 10-17
https://doi.org/10.1080/02827581.2010.485826
Kozai, T. Niu G., Takagaki M. (2015): Plant Factory: an Undoor vertical farming system for efficient quality food production. Elsevier, Netherlands.
Lattanzio V., Lattanzio V.M.T., Cardinali A. (2006): Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Imperato F. (ed.): Phytochemistry: Advances in Research, Research Signpost. Trivandrum, India: 23–67.
Li Qian, Kubota Chieri (2009): Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67, 59-64
https://doi.org/10.1016/j.envexpbot.2009.06.011
Li J., Li G., Wangb H., Wang Deng X. (2011): Phytochrome Signaling Mechanisms. The Arabidopsis Book 9: e0148.
Mattsson Anders (2008): Seasonal variation in root growth capacity during cultivation of container grown
Pinus sylvestris seedlings. Scandinavian Journal of Forest Research, 1, 473-482
https://doi.org/10.1080/02827588609382438
Mattsson A. (1996): Predicting field performance using seedling quality assessment. New Forests, 13: 223–48.
Morrow Robert C. (2008): LED Lighting in Horticulture. HortScience, 43, 1947-1950
https://doi.org/10.21273/HORTSCI.43.7.1947
Nadalini S., Zucchi P., Andreotti C. (2017): Effects of blue and red LED lights on soilless cultivated strawberry growth performances and fruit quality. European Journal for Horticultural Science, 82, 12-20
https://doi.org/10.17660/eJHS.2017/82.1.2
Ouzounis Theoharis, Fretté Xavier, Ottosen Carl-Otto, Rosenqvist Eva (2015): Spectral effects of LEDs on chlorophyll fluorescence and pigmentation in
Phalaenopsis ‘Vivien’ and ‘Purple Star’. Physiologia Plantarum, 154, 314-327
https://doi.org/10.1111/ppl.12300
Ouzounis T., Heuvelink E., Ji Y., Schouten H.J., Visser R.G.F., Marcelis L.F.M. (2016): Blue and red LED lighting effects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes. Acta Horticulturae, , 251-258
https://doi.org/10.17660/ActaHortic.2016.1134.34
Ouzounis Theoharis, Rosenqvist Eva, Ottosen Carl-Otto (2015): Spectral Effects of Artificial Light on Plant Physiology and Secondary Metabolism: A Review. HortScience, 50, 1128-1135
https://doi.org/10.21273/HORTSCI.50.8.1128
Piovene Chiara, Orsini Francesco, Bosi Sara, Sanoubar Rabab, Bregola Valeria, Dinelli Giovanni, Gianquinto Giorgio (2015): Optimal red:blue ratio in led lighting for nutraceutical indoor horticulture. Scientia Horticulturae, 193, 202-208
https://doi.org/10.1016/j.scienta.2015.07.015
Pizzale Lorena, Bortolomeazzi Renzo, Vichi Stefania, Überegger Eva, Conte Lanfranco S (2002): Antioxidant activity of sage (
Salvia officinalis and
S fruticosa ) and oregano (
Origanum onites and
O indercedens ) extracts related to their phenolic compound content. Journal of the Science of Food and Agriculture, 82, 1645-1651
https://doi.org/10.1002/jsfa.1240
Pokorný Jan (1991): Natural antioxidants for food use. Trends in Food Science & Technology, 2, 223-227
https://doi.org/10.1016/0924-2244(91)90695-F
Rabara Roel C., Behrman Glenn, Timbol Thomas, Rushton Paul J. (2017): Effect of Spectral Quality of Monochromatic LED Lights on the Growth of Artichoke Seedlings. Frontiers in Plant Science, 8, -
https://doi.org/10.3389/fpls.2017.00190
Radoglou K. (2003): The effects of planting date and seedling quality on field performance of Castanea sativa Mill. and Quercus frainetto Ten. seedlings. Forestry, 76, 569-578
https://doi.org/10.1093/forestry/76.5.569
Raftoyannis Y., Radoglou K., Halivopoulos G. (2006): Ecophysiology and Survival of Acer pseudoplatanus L., Castanea sativa Miller. and Quercus frainetto Ten. Seedlings on a Reforestation Site in Northern Greece. New Forests, 31, 151-163
https://doi.org/10.1007/s11056-004-7365-5
Richheimer Steven L., Bernart Matthew W., King Greg A., Kent Michael C., Beiley David T. (1996): Antioxidant activity of lipid-soluble phenolic diterpenes from rosemary. Journal of the American Oil Chemists’ Society, 73, 507-514
https://doi.org/10.1007/BF02523927
Ruberti I., Sessa G., Ciolfi A., Possenti M., Carabelli M., Morelli G. (2012): Plant adaptation to dynamically changing environment: The shade avoidance response. Biotechnology Advances, 30, 1047-1058
https://doi.org/10.1016/j.biotechadv.2011.08.014
Sager J.C., McFarlane J.C. (1997): Radiation. In: Langhans R.W., Tibbits T.W. (Eds.): Plant Growth Chamber Handbook. North Central Region Research Publication, Iowa State University Press: 1–29.
Samuolienė Giedrė, Brazaitytė Aušra, Sirtautas Ramūnas, Viršilė Akvilė, Sakalauskaitė Jurga, Sakalauskienė Sandra, Duchovskis Pavelas (2013): LED illumination affects bioactive compounds in romaine baby leaf lettuce. Journal of the Science of Food and Agriculture, 93, 3286-3291
https://doi.org/10.1002/jsfa.6173
Samuoliene G., Brazaityte A., Urbonaviciute A., Šabajeviene G., Duchovskis P. (2010): The effect of red and blue light component on the growth and development of frigo strawberries. Zemdirbyste-Agriculture, 97: 99–104.
Schwarz K., Ternes W. (1992): Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis. II. Isolation of carnosic acid and formation of other phenolic diterpenes. Zeitschrift fur Lebensmittel-Untersuching und-Forschung, 195: 99–103.
Seigler D. (1998): Plant secondary metabolism. Kluwer Academic Publishers, Dordrecht, Netherlands.
Singleton V.L., Rossi J.A. (1965): Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16: 144–158.
Smirnakou Sonia, Ouzounis Theoharis, Radoglou Kalliopi M. (2017): Continuous Spectrum LEDs Promote Seedling Quality Traits and Performance of Quercus ithaburensis var. macrolepis. Frontiers in Plant Science, 8, -
https://doi.org/10.3389/fpls.2017.00188
Smith Hayley L., McAusland Lorna, Murchie Erik H. (2017): Don’t ignore the green light: exploring diverse roles in plant processes. Journal of Experimental Botany, 68, 2099-2110
https://doi.org/10.1093/jxb/erx098
Snowden M. Chase, Cope Kevin R., Bugbee Bruce, Ezura Hiroshi (2016): Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux. PLOS ONE, 11, e0163121-
https://doi.org/10.1371/journal.pone.0163121
Wang Yihai, Folta Kevin M. (2013): Contributions of green light to plant growth and development. American Journal of Botany, 100, 70-78
https://doi.org/10.3732/ajb.1200354
Wink M. (2010): Functions and biotechnology of plant secondary metabolites. Annals of Plant Reviews, Vol. 3. Wiley-Blackwell, Oxford, UK.
Yorio Neil C., Goins Gregory D., Kagie Hollie R., Wheeler Raymond M., Sager John C. (2001): Improving Spinach, Radish, and Lettuce Growth under Red Light-emitting Diodes (LEDs) with Blue Light Supplementation. HortScience, 36, 380-383
https://doi.org/10.21273/HORTSCI.36.2.380