Testing the potential of LEDs to enhance growth and quality characteristics of Salvia fruticosa

https://doi.org/10.17221/206/2017-HORTSCICitation:Bantis F., Radoglou K. (2019): Testing the potential of LEDs to enhance growth and quality characteristics of Salvia fruticosa. Hort. Sci. (Prague), 46: 98-106.
download PDF

The effect of light-emitting diodes (LED) with broad radiation spectra on developmental, physiological, and phytochemical characteristics of Greek sage (Salvia fruticosa L.) seedlings was assessed. Fluorescent (FL – control) tubes and four LED lights [AP67 (moderate blue, red and far-red), L20AP67 (moderate blue, red and far-red, high green), AP673L (moderate blue, high red) and NS1 (high blue and green, low red, high red : far-red, 1% ultraviolet)] were used in a growth chamber. Seedlings grown under FL, L20AP67 and AP673L exhibited the best morphological and developmental characteristics. FL led to inferior root biomass formation compared to all LEDs. AP67 promoted greater root-to-shoot dry weight ratio and dry-to-fresh overground and root weight ratios, but induced the least morphological and developmental characteristics. NS1 performed well regarding the root biomass production. Total phenolic content and the root growth capacity were not significantly affected. The present study demonstrates that L20AP67 and AP673L LEDs performed equally to FL light regarding the developmental characteristics. AP67 and NS1 may have the potential to be used for compact seedling production.

Ahmad Margaret, Cashmore Anthony R. (1993): HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature, 366, 162-166  https://doi.org/10.1038/366162a0
Aruoma O. I., Halliwell B., Aeschbach R., Löligers J. (2008): Antioxidant and pro-oxidant properties of active rosemary constituents: carnosol and carnosic acid. Xenobiotica, 22, 257-268  https://doi.org/10.3109/00498259209046624
Bantis Filippos, Ouzounis Theoharis, Radoglou Kalliopi (2016): Artificial LED lighting enhances growth characteristics and total phenolic content of Ocimum basilicum , but variably affects transplant success. Scientia Horticulturae, 198, 277-283  https://doi.org/10.1016/j.scienta.2015.11.014
BANTIS Filippos, RADOGLOU Kalliopi (2017): Morphology, development, and transplant potential of Prunus aviumand Cornus sanguinea seedlings growing under different LED lights. TURKISH JOURNAL OF BIOLOGY, 41, 314-321  https://doi.org/10.3906/biy-1607-19
Bantis Filippos, Smirnakou Sonia, Ouzounis Theoharis, Koukounaras Athanasios, Ntagkas Nikolaos, Radoglou Kalliopi (2018): Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia Horticulturae, 235, 437-451  https://doi.org/10.1016/j.scienta.2018.02.058
Bentsink Leónie, Koornneef Maarten (2008): Seed Dormancy and Germination. The Arabidopsis Book, 6, e0119-  https://doi.org/10.1199/tab.0119
Bourget C. Michael (2008): An Introduction to Light-emitting Diodes. HortScience, 43, 1944-1946  https://doi.org/10.21273/HORTSCI.43.7.1944
Carvalho Sofia D, Folta Kevin M (2014): Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content. Horticulture Research, 1, -  https://doi.org/10.1038/hortres.2014.8
Casal Jorge J. (2012): Shade Avoidance. The Arabidopsis Book, 10, e0157-  https://doi.org/10.1199/tab.0157
Casal Jorge J. (2013): Photoreceptor Signaling Networks in Plant Responses to Shade. Annual Review of Plant Biology, 64, 403-427  https://doi.org/10.1146/annurev-arplant-050312-120221
Ceylan A. (1987): Medicinal Plant II. (Essential oil plants). Aegean University Agricultural Faculty publications, No: 481. (in Turkish)
Chen Meng, Chory Joanne (2011): Phytochrome signaling mechanisms and the control of plant development. Trends in Cell Biology, 21, 664-671  https://doi.org/10.1016/j.tcb.2011.07.002
Chen Xiao-li, Xue Xu-zhang, Guo Wen-zhong, Wang Li-chun, Qiao Xiao-jun (2016): Growth and nutritional properties of lettuce affected by mixed irradiation of white and supplemental light provided by light-emitting diode. Scientia Horticulturae, 200, 111-118  https://doi.org/10.1016/j.scienta.2016.01.007
Christie John M. (2007): Phototropin Blue-Light Receptors. Annual Review of Plant Biology, 58, 21-45  https://doi.org/10.1146/annurev.arplant.58.032806.103951
COOKSON SARAH JANE, GRANIER CHRISTINE (2006): A Dynamic Analysis of the Shade-induced Plasticity in Arabidopsis thaliana Rosette Leaf Development Reveals New Components of the Shade-adaptative Response. Annals of Botany, 97, 443-452  https://doi.org/10.1093/aob/mcj047
Cuvelier Marie Elisabeth, Berset Claudette, Richard Hubert (1994): Antioxidant Constituents in Sage (Salvia officinalis). Journal of Agricultural and Food Chemistry, 42, 665-669  https://doi.org/10.1021/jf00039a012
Das N. P., Pereira T. A. (1990): Effects of flavonoids on thermal autoxidation of palm oil: Structure-activity relationships. Journal of the American Oil Chemists' Society, 67, 255-258  https://doi.org/10.1007/BF02540652
Davis Phillip A., Burns Claire (2016): Photobiology in protected horticulture. Food and Energy Security, 5, 223-238  https://doi.org/10.1002/fes3.97
de Carbonnel Matthieu, Davis Phillip, Roelfsema M. Rob G., Inoue Shin-ichiro, Schepens Isabelle, Lariguet Patricia, Geisler Markus, Shimazaki Ken-ichiro, Hangarter Roger, Fankhauser Christian (2010): The Arabidopsis PHYTOCHROME KINASE SUBSTRATE2 Protein Is a Phototropin Signaling Element That Regulates Leaf Flattening and Leaf Positioning. Plant Physiology, 152, 1391-1405  https://doi.org/10.1104/pp.109.150441
Demotes-Mainard Sabine, Péron Thomas, Corot Adrien, Bertheloot Jessica, Le Gourrierec José, Pelleschi-Travier Sandrine, Crespel Laurent, Morel Philippe, Huché-Thélier Lydie, Boumaza Rachid, Vian Alain, Guérin Vincent, Leduc Nathalie, Sakr Soulaiman (2016): Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany, 121, 4-21  https://doi.org/10.1016/j.envexpbot.2015.05.010
Dougher Tracy A.O., Bugbee Bruce (2004): Long-term Blue Light Effects on the Histology of Lettuce and Soybean Leaves and Stems. Journal of the American Society for Horticultural Science, 129, 467-472  https://doi.org/10.21273/JASHS.129.4.0467
Fan XiaoXue, Zang Jie, Xu ZhiGang, Guo ShiRong, Jiao XueLei, Liu XiaoYing, Gao Ying (2013): Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris L.). Acta Physiologiae Plantarum, 35, 2721-2726  https://doi.org/10.1007/s11738-013-1304-z
Folta Kevin M., Lieg Erin J., Durham Tessa, Spalding Edgar P. (2003): Primary Inhibition of Hypocotyl Growth and Phototropism Depend Differently on Phototropin-Mediated Increases in Cytoplasmic Calcium Induced by Blue Light. Plant Physiology, 133, 1464-1470  https://doi.org/10.1104/pp.103.024372
Franklin Keara A. (2008): Shade avoidance. New Phytologist, 179, 930-944  https://doi.org/10.1111/j.1469-8137.2008.02507.x
Fraszczak B., Golcz A., Zawirska-Wojtasiak R., Janowska B. (2014): Growth rate of sweet basil and lemon balm plants grown under fluorescent lamps and LED modules. Acta Scientiarum Polonorum, 13: 3–13.
Goins G.D., Yorio N.C., Sanwo-Lewandowski M.M., Brown C.S. (1998): Life Cycle experiments with Arabidopsis grown under red light-emitting diodes (LEDs). Life Support and Biosphere Science, 52: 143–149.
Gupta D. (2017): Light Emitting Diodes for Agriculture. Springer, Singapore. CrossRef
Hemphill J., Hemphill R. (1990): Herbs: their cultivation and usage. Blandford Press, London.
Hernández R., Kubota C. (2016): Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany, 121, 66-74  https://doi.org/10.1016/j.envexpbot.2015.04.001
Hogewoning S. W., Trouwborst G., Maljaars H., Poorter H., van Ieperen W., Harbinson J. (2010): Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 61, 3107-3117  https://doi.org/10.1093/jxb/erq132
Hoenecke M.E., Bula R.J., Tibbitts T.W. (1992): Importance of `Blue' Photon Levels for Lettuce Seedlings Grown under Red-light-emitting Diodes. HortScience, 27, 427-430  https://doi.org/10.21273/HORTSCI.27.5.427
Huché-Thélier Lydie, Crespel Laurent, Gourrierec José Le, Morel Philippe, Sakr Soulaiman, Leduc Nathalie (2016): Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environmental and Experimental Botany, 121, 22-38  https://doi.org/10.1016/j.envexpbot.2015.06.009
Jenkins Gareth I. (2014): The UV-B Photoreceptor UVR8: From Structure to Physiology. The Plant Cell, 26, 21-37  https://doi.org/10.1105/tpc.113.119446
Johkan Masahumi, Shoji Kazuhiro, Goto Fumiyuki, Hashida Shin-nosuke, Yoshihara Toshihiro (2010): Blue Light-emitting Diode Light Irradiation of Seedlings Improves Seedling Quality and Growth after Transplanting in Red Leaf Lettuce. HortScience, 45, 1809-1814  https://doi.org/10.21273/HORTSCI.45.12.1809
Kami C., Lorrain S., Hornitschek P., Fankhauser C. (2010): Light-regulated plant growth and development. Current Topics in Developmental Biology, 91: 29–66.
Kopsell Dean A., Sams Carl E. (2013): Increases in Shoot Tissue Pigments, Glucosinolates, and Mineral Elements in Sprouting Broccoli after Exposure to Short-duration Blue Light from Light Emitting Diodes. Journal of the American Society for Horticultural Science, 138, 31-37  https://doi.org/10.21273/JASHS.138.1.31
Kopsell Dean A., Kopsell David E., Lefsrud Mark G., Curran-Celentano Joanne, Dukach Laura E. (2004): Variation in Lutein, β-carotene, and Chlorophyll Concentrations among Brassica oleracea Cultigens and Seasons. HortScience, 39, 361-364  https://doi.org/10.21273/HORTSCI.39.2.361
Kostopoulou Panagiota, Dini-Papanastasi Olympia, Radoglou Kalliopi (2010): Density and substrate effects on morphological and physiological parameters of plant stock material of four forest species grown in mini-plugs. Scandinavian Journal of Forest Research, 25, 10-17  https://doi.org/10.1080/02827581.2010.485826
Kozai, T. Niu G., Takagaki M. (2015): Plant Factory: an Undoor vertical farming system for efficient quality food production. Elsevier, Netherlands.
Lattanzio V., Lattanzio V.M.T., Cardinali A. (2006): Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Imperato F. (ed.): Phytochemistry: Advances in Research, Research Signpost. Trivandrum, India: 23–67.
Li Qian, Kubota Chieri (2009): Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67, 59-64  https://doi.org/10.1016/j.envexpbot.2009.06.011
Li J., Li G., Wangb H., Wang Deng X. (2011): Phytochrome Signaling Mechanisms. The Arabidopsis Book 9: e0148.
Mattsson Anders (2008): Seasonal variation in root growth capacity during cultivation of container grown Pinus sylvestris seedlings. Scandinavian Journal of Forest Research, 1, 473-482  https://doi.org/10.1080/02827588609382438
Mattsson A. (1996): Predicting field performance using seedling quality assessment. New Forests, 13: 223–48.
Morrow Robert C. (2008): LED Lighting in Horticulture. HortScience, 43, 1947-1950  https://doi.org/10.21273/HORTSCI.43.7.1947
Nadalini S., Zucchi P., Andreotti C. (2017): Effects of blue and red LED lights on soilless cultivated strawberry growth performances and fruit quality. European Journal for Horticultural Science, 82, 12-20  https://doi.org/10.17660/eJHS.2017/82.1.2
Ouzounis Theoharis, Fretté Xavier, Ottosen Carl-Otto, Rosenqvist Eva (2015): Spectral effects of LEDs on chlorophyll fluorescence and pigmentation in Phalaenopsis ‘Vivien’ and ‘Purple Star’. Physiologia Plantarum, 154, 314-327  https://doi.org/10.1111/ppl.12300
Ouzounis T., Heuvelink E., Ji Y., Schouten H.J., Visser R.G.F., Marcelis L.F.M. (2016): Blue and red LED lighting effects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes. Acta Horticulturae, , 251-258  https://doi.org/10.17660/ActaHortic.2016.1134.34
Ouzounis Theoharis, Rosenqvist Eva, Ottosen Carl-Otto (2015): Spectral Effects of Artificial Light on Plant Physiology and Secondary Metabolism: A Review. HortScience, 50, 1128-1135  https://doi.org/10.21273/HORTSCI.50.8.1128
Piovene Chiara, Orsini Francesco, Bosi Sara, Sanoubar Rabab, Bregola Valeria, Dinelli Giovanni, Gianquinto Giorgio (2015): Optimal red:blue ratio in led lighting for nutraceutical indoor horticulture. Scientia Horticulturae, 193, 202-208  https://doi.org/10.1016/j.scienta.2015.07.015
Pizzale Lorena, Bortolomeazzi Renzo, Vichi Stefania, Überegger Eva, Conte Lanfranco S (2002): Antioxidant activity of sage ( Salvia officinalis and S fruticosa ) and oregano ( Origanum onites and O indercedens ) extracts related to their phenolic compound content. Journal of the Science of Food and Agriculture, 82, 1645-1651  https://doi.org/10.1002/jsfa.1240
Pokorný Jan (1991): Natural antioxidants for food use. Trends in Food Science & Technology, 2, 223-227  https://doi.org/10.1016/0924-2244(91)90695-F
Rabara Roel C., Behrman Glenn, Timbol Thomas, Rushton Paul J. (2017): Effect of Spectral Quality of Monochromatic LED Lights on the Growth of Artichoke Seedlings. Frontiers in Plant Science, 8, -  https://doi.org/10.3389/fpls.2017.00190
Radoglou K. (2003): The effects of planting date and seedling quality on field performance of Castanea sativa Mill. and Quercus frainetto Ten. seedlings. Forestry, 76, 569-578  https://doi.org/10.1093/forestry/76.5.569
Raftoyannis Y., Radoglou K., Halivopoulos G. (2006): Ecophysiology and Survival of Acer pseudoplatanus L., Castanea sativa Miller. and Quercus frainetto Ten. Seedlings on a Reforestation Site in Northern Greece. New Forests, 31, 151-163  https://doi.org/10.1007/s11056-004-7365-5
Richheimer Steven L., Bernart Matthew W., King Greg A., Kent Michael C., Beiley David T. (1996): Antioxidant activity of lipid-soluble phenolic diterpenes from rosemary. Journal of the American Oil Chemists’ Society, 73, 507-514  https://doi.org/10.1007/BF02523927
Ruberti I., Sessa G., Ciolfi A., Possenti M., Carabelli M., Morelli G. (2012): Plant adaptation to dynamically changing environment: The shade avoidance response. Biotechnology Advances, 30, 1047-1058  https://doi.org/10.1016/j.biotechadv.2011.08.014
Sager J.C., McFarlane J.C. (1997): Radiation. In: Langhans R.W., Tibbits T.W. (Eds.): Plant Growth Chamber Handbook. North Central Region Research Publication, Iowa State University Press: 1–29.
Samuolienė Giedrė, Brazaitytė Aušra, Sirtautas Ramūnas, Viršilė Akvilė, Sakalauskaitė Jurga, Sakalauskienė Sandra, Duchovskis Pavelas (2013): LED illumination affects bioactive compounds in romaine baby leaf lettuce. Journal of the Science of Food and Agriculture, 93, 3286-3291  https://doi.org/10.1002/jsfa.6173
Samuoliene G., Brazaityte A., Urbonaviciute A., Šabajeviene G., Duchovskis P. (2010): The effect of red and blue light component on the growth and development of frigo strawberries. Zemdirbyste-Agriculture, 97: 99–104.
Schwarz K., Ternes W. (1992): Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis. II. Isolation of carnosic acid and formation of other phenolic diterpenes. Zeitschrift fur Lebensmittel-Untersuching und-Forschung, 195: 99–103.
Seigler D. (1998): Plant secondary metabolism. Kluwer Academic Publishers, Dordrecht, Netherlands.
Singleton V.L., Rossi J.A. (1965): Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16: 144–158.
Smirnakou Sonia, Ouzounis Theoharis, Radoglou Kalliopi M. (2017): Continuous Spectrum LEDs Promote Seedling Quality Traits and Performance of Quercus ithaburensis var. macrolepis. Frontiers in Plant Science, 8, -  https://doi.org/10.3389/fpls.2017.00188
Smith Hayley L., McAusland Lorna, Murchie Erik H. (2017): Don’t ignore the green light: exploring diverse roles in plant processes. Journal of Experimental Botany, 68, 2099-2110  https://doi.org/10.1093/jxb/erx098
Snowden M. Chase, Cope Kevin R., Bugbee Bruce, Ezura Hiroshi (2016): Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux. PLOS ONE, 11, e0163121-  https://doi.org/10.1371/journal.pone.0163121
Wang Yihai, Folta Kevin M. (2013): Contributions of green light to plant growth and development. American Journal of Botany, 100, 70-78  https://doi.org/10.3732/ajb.1200354
Wink M. (2010): Functions and biotechnology of plant secondary metabolites. Annals of Plant Reviews, Vol. 3. Wiley-Blackwell, Oxford, UK.
Yorio Neil C., Goins Gregory D., Kagie Hollie R., Wheeler Raymond M., Sager John C. (2001): Improving Spinach, Radish, and Lettuce Growth under Red Light-emitting Diodes (LEDs) with Blue Light Supplementation. HortScience, 36, 380-383  https://doi.org/10.21273/HORTSCI.36.2.380
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti