Effect of lime concentration on pear’s rootstock/scion combinations

https://doi.org/10.17221/210/2017-HORTSCICitation:Esmaeili A., Abdollahi H., Bazgir M., Abdossi V. (2019): Effect of lime concentration on pear’s rootstock/scion combinations. Hort. Sci. (Prague), 46: 123-131.
download PDF

The aim of the research was the determination of the tolerance of different pear grafting combinations to various levels o lime concentration in calcareous soils. The experiment was carried out under pot conditions for a two-year period (2015–2016). Two factors including combination of rootstocks/scions (3 × 3) and levels of lime concentration were employed to evaluate leaf responses including total iron (Fe), available Fe, chlorophyll (Chl) (a, b, total), and chlorophyll fluorescence attributes (F0, Fm, Fv/Fm) as well as annual growth and internode length of current shoots. Results showed that soil lime significantly reduced tree growth but conversely intensified iron chlorosis. Also, contrary to our expectations, the Pyrodwarf/Pyrus communis L. (Dargazi) combination displayed more tolerance to high lime concentrations, whereas the OH × F/Williams Duchesse combination did not exhibit suitable tolerance. As a pear rootstock native to Iran, Dargazi seedling rootstock in combination with different scions was found to have relatively better growth under low lime concentrations, but its response under high lime was not as favourable as expected. Cultivar Dargazi combined with different rootstocks showed a better response to high lime stress compared to other scions, while cultivar Williams Duchesse exhibited lower tolerance to high lime concentration when combined with different pear rootstocks.

References:
Alcántara E., Romera F.J., Cañete M., de la Guardia M.D. (2000): Effects of bicarbonate and iron supply on Fe (III) reducing capacity of roots and leaf chlorosis of the susceptible peach rootstock ‘‘Nemaguard’’. Journal of Plant Nutrition, 23: 1607–1617. https://doi.org/10.1080/01904160009382127
 
Barazani O., Waitz Y., Tugendhaft Y., Dorman M.D., Hamidat M., Hijawi T., Kerem Z., Westberg E., Kadereit J. (2017): Testing the potential significance of different scion/rootstock genotype combinations on the ecology of old cultivated olive trees in the southeast Mediterranean area. BMC Ecology, 17: Art. No. 3.  https://doi.org/10.1186/s12898-017-0114-3
 
Bavaresco L., Lovisolo C. (2000): Effect of grafting on grapevine chlorosis and hydraulic conductivity. Vitis, 39: 89–92.
 
Covarrubias J.I., Retamales C., Donnini S., Rombola A.D., Pastenes C. (2016): Contrasting physiological responses to iron deficiency in Cabernet Sauvignon grapevines grafted on two rootstocks. Scientia Horticulturae, 199: 1–8. https://doi.org/10.1016/j.scienta.2015.12.013
 
FAO (2014): FAOSTAT, Agricultural Statistics Database. Available at: http//:www.fao.org.
 
Fraga H., Malheiro A.C., Moutinho-Pereira J., Santos J.A. (2012): An overview of climate change impacts on European viticulture. Food and Energy Security, 1: 94–110. https://doi.org/10.1002/fes3.14
 
Gonzalez M., Llosa J., Quijano A., Forner M.A. (2007): Rootstock effects on leaf photosynthesis in ‘Navelina’ trees grown in calcareous soil. Horticultural Science, 44: 280–283.
 
Hanana M., Hamrouni L., Hamed K., Abdelly C. (2015): Influence of the rootstock/scion combination on the grapevine’s behavior under salt stress. Plant Physiology and Biochemistry, 3: 3.
 
Ikinci A., Bolat I., Ercisli S., Kodad O. (2014): Influence of rootstocks on growth, yield, and fruit quality and leaf mineral element contents of pear cv. ‘Santa Maria’ in semi-arid conditions. Biological Research, 47: 71. https://doi.org/10.1186/0717-6287-47-71
 
Incesu M., Yesloglu T., Cimen B., Bilge Yilmaz B. (2015): Influence of different iron levels on plant growth and photosynthesis of W. Murcott mandarin grafted on two rootstocks under high pH conditions. Turkish Journal of Agriculture and Forestry, 39: 838–844. https://doi.org/10.3906/tar-1501-25
 
Jones J.B.J.R, Case V.W. (1990): Sampling, handling, and analyzing plant tissue samples. In R.L. Westerman, Ed., Soil Testing and Plant Analysis, 3rd Ed., SSSA Book Series Number 3, Soil Science Society of America, Madison: 389–427.
 
Katyal J.C., Sharma B.D. (1980): A new technique of plant analysis to resolveiron chlorosis. Plant Soil, 55: 105–119. https://doi.org/10.1007/BF02149714
 
Lichtenthaler H.K., Wellburn A.R. (1983): Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11: 591–592. https://doi.org/10.1042/bst0110591
 
Ma C., Tanabe K., Itai A., Tamura F., Chun j., Teng Y. (2005): Tolerance to lime- induced iron chlorosis of Asian pear (Pyrus ssp.). Journal of the Japanese Society for Horticultural Science, 74: 419–423. https://doi.org/10.2503/jjshs.74.419
 
Marschner H. (2012). Marschner’s mineral nutrition of higher plants, 89: 85–90.
 
Meggio F., Prinsi B., Negri A.S., Di Lorenzo G.S., Lucchini G., Pitacco P., Espen L. (2014): Biochemical and physiological responses of two grapevine rootstock genotypes to drought and salt treatments. Australian Journal of Grape and Wine Research, 20: 310–323. https://doi.org/10.1111/ajgw.12071
 
Mengel K. (1994): Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant Soil, 165: 275–283. https://doi.org/10.1007/BF00008070
 
Mestre L., Reig G., Betran J., Moreno M. (2017): Influence of plum rootstocks on agronomic performance, leaf mineral nutrition and fruit quality of ‘Catherina’ peach cultivar in heavy calcareous soil conditions. Spanish Journal of Agricultural Research: 15, 1–11. https://doi.org/10.5424/sjar/2017151-9950
 
Pestana M.A., de Varennes J., Abadı ´A., Arau´joFaria E. (2005): Differential tolerance to iron deficiency of citrus rootstocks grown in nutrient solution. Scientia Horticulturae, 104: 25–36. https://doi.org/10.1016/j.scienta.2004.07.007
 
Reig G., Mestre L., Betrán J.A., Pinochet J., Moreno M.A. (2016): Agronomic and physicochemical fruit properties of ‘Big Top’ nectarine budded on peach and plum based rootstocks in Mediterranean conditions. Scientia Horticulturae, 210: 85–92. https://doi.org/10.1016/j.scienta.2016.06.037
 
Sanz M., Heras L., Montanes L. (1992): Relationship between yield and leaf nutrient contents in peach trees: Early nutritional status diagnosis. Journal of Plant Nutrition, 15: 1457–1466.  https://doi.org/10.1080/01904169209364411
 
Sotiropoulos T.E. (2006): Performance of the pear (Pyrus communis) cultivar ‘William’s Bon Chretien’ grafted on seven rootstocks. Australian Journal of Experimental Agriculture, 46: 701–705.  https://doi.org/10.1071/EA04132
 
Sotomayor C., Ruiz R., Castro J. (2014): Growth, yield and iron deficiency tolerance level of six peach rootstocks grown on calcareous soil. Ciencia e Investigacion Agraria, 41: 403–9. https://doi.org/10.4067/S0718-16202014000300013
 
Sugar D., Basile S.R. (2011): Performance of ‘Comice’ pear on quince rootstocks in Oregon, USA. Acta Horticulturae (ISHS), 909: 215–218. https://doi.org/10.17660/ActaHortic.2011.909.23
 
Tagliavini M., Rombola A. (2001): Iron deficiency and chlorosis in orchard and vineyard ecosystems. European Journal of Agronomy, 15: 71–92. https://doi.org/10.1016/S1161-0301(01)00125-3
 
Tagliavini M., Scudellari D., Marangoni B., Toselli M. (1995): Acid-spray regreening of kiwifruit leaves affected by lime-induced iron chlorosis. In: Abadía, J. (ed.), Iron Nutrition in Soil and Plants. Kluwer Academic Publishers, Dordrecht, the Netherlands: 191–195.
 
Zhao X., Du Q., Zhao Y., Wang H., Li Y., Wang X., Yu H. (2016): Effects of Different Potassium Stress on Leaf Photosynthesis and Chlorophyll Fluorescence in Maize (Zea mays L.) at Seedling Stage. Agricultural Sciences, 7: 44–53. https://doi.org/10.4236/as.2016.71005
 
Zribi K., Gharsalli M. (2006): Effect of bicarbonate on growth and iron nutrition of pea. Journal of Plant Nutrition, 25: 2143–2149. https://doi.org/10.1081/PLN-120014066
 
Alcántara E., Romera F.J., Cañete M., de la Guardia M.D. (2000): Effects of bicarbonate and iron supply on Fe (III) reducing capacity of roots and leaf chlorosis of the susceptible peach rootstock ‘‘Nemaguard’’. Journal of Plant Nutrition, 23: 1607–1617. https://doi.org/10.1080/01904160009382127
 
Barazani O., Waitz Y., Tugendhaft Y., Dorman M.D., Hamidat M., Hijawi T., Kerem Z., Westberg E., Kadereit J. (2017): Testing the potential significance of different scion/rootstock genotype combinations on the ecology of old cultivated olive trees in the southeast Mediterranean area. BMC Ecology, 17: Art. No. 3.  https://doi.org/10.1186/s12898-017-0114-3
 
Bavaresco L., Lovisolo C. (2000): Effect of grafting on grapevine chlorosis and hydraulic conductivity. Vitis, 39: 89–92.
 
Covarrubias J.I., Retamales C., Donnini S., Rombola A.D., Pastenes C. (2016): Contrasting physiological responses to iron deficiency in Cabernet Sauvignon grapevines grafted on two rootstocks. Scientia Horticulturae, 199: 1–8. https://doi.org/10.1016/j.scienta.2015.12.013
 
FAO (2014): FAOSTAT, Agricultural Statistics Database. Available at: http//:www.fao.org.
 
Fraga H., Malheiro A.C., Moutinho-Pereira J., Santos J.A. (2012): An overview of climate change impacts on European viticulture. Food and Energy Security, 1: 94–110. https://doi.org/10.1002/fes3.14
 
Gonzalez M., Llosa J., Quijano A., Forner M.A. (2007): Rootstock effects on leaf photosynthesis in ‘Navelina’ trees grown in calcareous soil. Horticultural Science, 44: 280–283.
 
Hanana M., Hamrouni L., Hamed K., Abdelly C. (2015): Influence of the rootstock/scion combination on the grapevine’s behavior under salt stress. Plant Physiology and Biochemistry, 3: 3.
 
Ikinci A., Bolat I., Ercisli S., Kodad O. (2014): Influence of rootstocks on growth, yield, and fruit quality and leaf mineral element contents of pear cv. ‘Santa Maria’ in semi-arid conditions. Biological Research, 47: 71. https://doi.org/10.1186/0717-6287-47-71
 
Incesu M., Yesloglu T., Cimen B., Bilge Yilmaz B. (2015): Influence of different iron levels on plant growth and photosynthesis of W. Murcott mandarin grafted on two rootstocks under high pH conditions. Turkish Journal of Agriculture and Forestry, 39: 838–844. https://doi.org/10.3906/tar-1501-25
 
Jones J.B.J.R, Case V.W. (1990): Sampling, handling, and analyzing plant tissue samples. In R.L. Westerman, Ed., Soil Testing and Plant Analysis, 3rd Ed., SSSA Book Series Number 3, Soil Science Society of America, Madison: 389–427.
 
Katyal J.C., Sharma B.D. (1980): A new technique of plant analysis to resolveiron chlorosis. Plant Soil, 55: 105–119. https://doi.org/10.1007/BF02149714
 
Lichtenthaler H.K., Wellburn A.R. (1983): Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11: 591–592. https://doi.org/10.1042/bst0110591
 
Ma C., Tanabe K., Itai A., Tamura F., Chun j., Teng Y. (2005): Tolerance to lime- induced iron chlorosis of Asian pear (Pyrus ssp.). Journal of the Japanese Society for Horticultural Science, 74: 419–423. https://doi.org/10.2503/jjshs.74.419
 
Marschner H. (2012). Marschner’s mineral nutrition of higher plants, 89: 85–90.
 
Meggio F., Prinsi B., Negri A.S., Di Lorenzo G.S., Lucchini G., Pitacco P., Espen L. (2014): Biochemical and physiological responses of two grapevine rootstock genotypes to drought and salt treatments. Australian Journal of Grape and Wine Research, 20: 310–323. https://doi.org/10.1111/ajgw.12071
 
Mengel K. (1994): Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant Soil, 165: 275–283. https://doi.org/10.1007/BF00008070
 
Mestre L., Reig G., Betran J., Moreno M. (2017): Influence of plum rootstocks on agronomic performance, leaf mineral nutrition and fruit quality of ‘Catherina’ peach cultivar in heavy calcareous soil conditions. Spanish Journal of Agricultural Research: 15, 1–11. https://doi.org/10.5424/sjar/2017151-9950
 
Pestana M.A., de Varennes J., Abadı ´A., Arau´joFaria E. (2005): Differential tolerance to iron deficiency of citrus rootstocks grown in nutrient solution. Scientia Horticulturae, 104: 25–36. https://doi.org/10.1016/j.scienta.2004.07.007
 
Reig G., Mestre L., Betrán J.A., Pinochet J., Moreno M.A. (2016): Agronomic and physicochemical fruit properties of ‘Big Top’ nectarine budded on peach and plum based rootstocks in Mediterranean conditions. Scientia Horticulturae, 210: 85–92. https://doi.org/10.1016/j.scienta.2016.06.037
 
Sanz M., Heras L., Montanes L. (1992): Relationship between yield and leaf nutrient contents in peach trees: Early nutritional status diagnosis. Journal of Plant Nutrition, 15: 1457–1466.  https://doi.org/10.1080/01904169209364411
 
Sotiropoulos T.E. (2006): Performance of the pear (Pyrus communis) cultivar ‘William’s Bon Chretien’ grafted on seven rootstocks. Australian Journal of Experimental Agriculture, 46: 701–705.  https://doi.org/10.1071/EA04132
 
Sotomayor C., Ruiz R., Castro J. (2014): Growth, yield and iron deficiency tolerance level of six peach rootstocks grown on calcareous soil. Ciencia e Investigacion Agraria, 41: 403–9. https://doi.org/10.4067/S0718-16202014000300013
 
Sugar D., Basile S.R. (2011): Performance of ‘Comice’ pear on quince rootstocks in Oregon, USA. Acta Horticulturae (ISHS), 909: 215–218. https://doi.org/10.17660/ActaHortic.2011.909.23
 
Tagliavini M., Rombola A. (2001): Iron deficiency and chlorosis in orchard and vineyard ecosystems. European Journal of Agronomy, 15: 71–92. https://doi.org/10.1016/S1161-0301(01)00125-3
 
Tagliavini M., Scudellari D., Marangoni B., Toselli M. (1995): Acid-spray regreening of kiwifruit leaves affected by lime-induced iron chlorosis. In: Abadía, J. (ed.), Iron Nutrition in Soil and Plants. Kluwer Academic Publishers, Dordrecht, the Netherlands: 191–195.
 
Zhao X., Du Q., Zhao Y., Wang H., Li Y., Wang X., Yu H. (2016): Effects of Different Potassium Stress on Leaf Photosynthesis and Chlorophyll Fluorescence in Maize (Zea mays L.) at Seedling Stage. Agricultural Sciences, 7: 44–53. https://doi.org/10.4236/as.2016.71005
 
Zribi K., Gharsalli M. (2006): Effect of bicarbonate on growth and iron nutrition of pea. Journal of Plant Nutrition, 25: 2143–2149. https://doi.org/10.1081/PLN-120014066
 
Alcántara E., Romera F.J., Cañete M., de la Guardia M.D. (2000): Effects of bicarbonate and iron supply on Fe (III) reducing capacity of roots and leaf chlorosis of the susceptible peach rootstock ‘‘Nemaguard’’. Journal of Plant Nutrition, 23: 1607–1617. https://doi.org/10.1080/01904160009382127
 
Barazani O., Waitz Y., Tugendhaft Y., Dorman M.D., Hamidat M., Hijawi T., Kerem Z., Westberg E., Kadereit J. (2017): Testing the potential significance of different scion/rootstock genotype combinations on the ecology of old cultivated olive trees in the southeast Mediterranean area. BMC Ecology, 17: Art. No. 3.  https://doi.org/10.1186/s12898-017-0114-3
 
Bavaresco L., Lovisolo C. (2000): Effect of grafting on grapevine chlorosis and hydraulic conductivity. Vitis, 39: 89–92.
 
Covarrubias J.I., Retamales C., Donnini S., Rombola A.D., Pastenes C. (2016): Contrasting physiological responses to iron deficiency in Cabernet Sauvignon grapevines grafted on two rootstocks. Scientia Horticulturae, 199: 1–8. https://doi.org/10.1016/j.scienta.2015.12.013
 
FAO (2014): FAOSTAT, Agricultural Statistics Database. Available at: http//:www.fao.org.
 
Fraga H., Malheiro A.C., Moutinho-Pereira J., Santos J.A. (2012): An overview of climate change impacts on European viticulture. Food and Energy Security, 1: 94–110. https://doi.org/10.1002/fes3.14
 
Gonzalez M., Llosa J., Quijano A., Forner M.A. (2007): Rootstock effects on leaf photosynthesis in ‘Navelina’ trees grown in calcareous soil. Horticultural Science, 44: 280–283.
 
Hanana M., Hamrouni L., Hamed K., Abdelly C. (2015): Influence of the rootstock/scion combination on the grapevine’s behavior under salt stress. Plant Physiology and Biochemistry, 3: 3.
 
Ikinci A., Bolat I., Ercisli S., Kodad O. (2014): Influence of rootstocks on growth, yield, and fruit quality and leaf mineral element contents of pear cv. ‘Santa Maria’ in semi-arid conditions. Biological Research, 47: 71. https://doi.org/10.1186/0717-6287-47-71
 
Incesu M., Yesloglu T., Cimen B., Bilge Yilmaz B. (2015): Influence of different iron levels on plant growth and photosynthesis of W. Murcott mandarin grafted on two rootstocks under high pH conditions. Turkish Journal of Agriculture and Forestry, 39: 838–844. https://doi.org/10.3906/tar-1501-25
 
Jones J.B.J.R, Case V.W. (1990): Sampling, handling, and analyzing plant tissue samples. In R.L. Westerman, Ed., Soil Testing and Plant Analysis, 3rd Ed., SSSA Book Series Number 3, Soil Science Society of America, Madison: 389–427.
 
Katyal J.C., Sharma B.D. (1980): A new technique of plant analysis to resolveiron chlorosis. Plant Soil, 55: 105–119. https://doi.org/10.1007/BF02149714
 
Lichtenthaler H.K., Wellburn A.R. (1983): Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11: 591–592. https://doi.org/10.1042/bst0110591
 
Ma C., Tanabe K., Itai A., Tamura F., Chun j., Teng Y. (2005): Tolerance to lime- induced iron chlorosis of Asian pear (Pyrus ssp.). Journal of the Japanese Society for Horticultural Science, 74: 419–423. https://doi.org/10.2503/jjshs.74.419
 
Marschner H. (2012). Marschner’s mineral nutrition of higher plants, 89: 85–90.
 
Meggio F., Prinsi B., Negri A.S., Di Lorenzo G.S., Lucchini G., Pitacco P., Espen L. (2014): Biochemical and physiological responses of two grapevine rootstock genotypes to drought and salt treatments. Australian Journal of Grape and Wine Research, 20: 310–323. https://doi.org/10.1111/ajgw.12071
 
Mengel K. (1994): Iron availability in plant tissues-iron chlorosis on calcareous soils. Plant Soil, 165: 275–283. https://doi.org/10.1007/BF00008070
 
Mestre L., Reig G., Betran J., Moreno M. (2017): Influence of plum rootstocks on agronomic performance, leaf mineral nutrition and fruit quality of ‘Catherina’ peach cultivar in heavy calcareous soil conditions. Spanish Journal of Agricultural Research: 15, 1–11. https://doi.org/10.5424/sjar/2017151-9950
 
Pestana M.A., de Varennes J., Abadı ´A., Arau´joFaria E. (2005): Differential tolerance to iron deficiency of citrus rootstocks grown in nutrient solution. Scientia Horticulturae, 104: 25–36. https://doi.org/10.1016/j.scienta.2004.07.007
 
Reig G., Mestre L., Betrán J.A., Pinochet J., Moreno M.A. (2016): Agronomic and physicochemical fruit properties of ‘Big Top’ nectarine budded on peach and plum based rootstocks in Mediterranean conditions. Scientia Horticulturae, 210: 85–92. https://doi.org/10.1016/j.scienta.2016.06.037
 
Sanz M., Heras L., Montanes L. (1992): Relationship between yield and leaf nutrient contents in peach trees: Early nutritional status diagnosis. Journal of Plant Nutrition, 15: 1457–1466.  https://doi.org/10.1080/01904169209364411
 
Sotiropoulos T.E. (2006): Performance of the pear (Pyrus communis) cultivar ‘William’s Bon Chretien’ grafted on seven rootstocks. Australian Journal of Experimental Agriculture, 46: 701–705.  https://doi.org/10.1071/EA04132
 
Sotomayor C., Ruiz R., Castro J. (2014): Growth, yield and iron deficiency tolerance level of six peach rootstocks grown on calcareous soil. Ciencia e Investigacion Agraria, 41: 403–9. https://doi.org/10.4067/S0718-16202014000300013
 
Sugar D., Basile S.R. (2011): Performance of ‘Comice’ pear on quince rootstocks in Oregon, USA. Acta Horticulturae (ISHS), 909: 215–218. https://doi.org/10.17660/ActaHortic.2011.909.23
 
Tagliavini M., Rombola A. (2001): Iron deficiency and chlorosis in orchard and vineyard ecosystems. European Journal of Agronomy, 15: 71–92. https://doi.org/10.1016/S1161-0301(01)00125-3
 
Tagliavini M., Scudellari D., Marangoni B., Toselli M. (1995): Acid-spray regreening of kiwifruit leaves affected by lime-induced iron chlorosis. In: Abadía, J. (ed.), Iron Nutrition in Soil and Plants. Kluwer Academic Publishers, Dordrecht, the Netherlands: 191–195.
 
Zhao X., Du Q., Zhao Y., Wang H., Li Y., Wang X., Yu H. (2016): Effects of Different Potassium Stress on Leaf Photosynthesis and Chlorophyll Fluorescence in Maize (Zea mays L.) at Seedling Stage. Agricultural Sciences, 7: 44–53. https://doi.org/10.4236/as.2016.71005
 
Zribi K., Gharsalli M. (2006): Effect of bicarbonate on growth and iron nutrition of pea. Journal of Plant Nutrition, 25: 2143–2149. https://doi.org/10.1081/PLN-120014066
 
download PDF

© 2019 Czech Academy of Agricultural Sciences