Use of solid phase of digestate for production of growing horticultural substrates 

https://doi.org/10.17221/221/2016-HORTSCICitation:Dubský M., Chaloupková Š., Kaplan L., Vondráčková S., Tlustoš P. (2019): Use of solid phase of digestate for production of growing horticultural substrates . Hort. Sci. (Prague), 46: 34-42.
download PDF

Solid phase of digestate (SD) of agricultural biogas plants, containing undecomposed fibrous fractions of organic matter, is usable as a constituent of growing substrates. The content of soluble salts and available nutrients is limiting for SD addition into growing substrates. For addition of SD with initial 80% moisture its content of ammonium nitrogen and available potassium is limiting. The SD with natural moistness can be used in peat based substrates up to 10% volume. The content of ammonium nitrogen during the drying of SD with the use of waste heat from biogas plants is decreased. Optimal proportion of dry SD (dSD) in peat based substrates ranged from 20 to 40% volume. Peat based substrates with 20% volume of dSD had suitable physical and chemical (e.g. content of available potassium
< 300 mg/l) properties. These
dSD-peat growing substrates have been successfully tested in greenhouse experiments with pot plants (Petunia, Impatiens, and Pelargonium). The addition of dSD to peat based substrates increased air capacity and decreased easily available water content. However, the basic fertilization of the dSD-peat growing substrates is necessary to optimize the content of nutrients.

References:
Abubaker J., Risberg K., Pell M. (2012): Biogas residues as fertilisers – Effects on wheat growth and soil microbial activities. Applied Energy, 99, 126-134 https://doi.org/10.1016/j.apenergy.2012.04.050
 
Alt D. (1994): Eine neue rationelle Analysen-Methode. Deutscher Gartenbau, 48: 205–207.
 
Bohne H., Wrede A. (2005): Investigations of physical properties of growing substrates. European Journal of Horticultural Science, 70: 1–6.
 
Bustamante M.A., Restrepo A.P., Alburquerque J.A., Pérez-Murcia M.D., Paredes C., Moral R., Bernal M.P. (2013): Recycling of anaerobic digestates by composting: effect of the bulking agent used. Journal of Cleaner Production, 47, 61-69 https://doi.org/10.1016/j.jclepro.2012.07.018
 
Carlile W.R. (2008): THE USE OF COMPOSTED MATERIALS IN GROWING MEDIA. Acta Horticulturae, , 321-328 https://doi.org/10.17660/ActaHortic.2008.779.39
 
Crippa L., Zaccheo P., Orfeo D. (2013): UTILIZATION OF THE SOLID FRACTION OF DIGESTATE FROM ANAEROBIC DIGESTION AS CONTAINER MEDIA SUBSTRATE. Acta Horticulturae, , 367-373 https://doi.org/10.17660/ActaHortic.2013.1013.45
 
de Boodt M., Verdonck O., Cappaert I. (1974): Method for measuring water release curve of organic substrates. Acta Horticulturae (ISHS), 37: 254–262.
 
Fisher P.R. (2004): Managing pH for container media. In: Hamrick D. (ed.): Ball RedBook. Batavia, Ball Publishing: 39–45.
 
Judd L.K., Cox D.A. (1992): Growth of New Guinea Impatiens inhibited by high growth-medium electrical conductivity, Hortscience, 27: 1193–1194.
 
Makadi M., Tomocsik A., Orosz V. (2012): Digestate: a new nutrient source – Review. In: Kumar S. (ed.): Biogas. Rijeka, InTech: 295–309.
 
Mills H.A., Jones J.B. (1996): Plant Analysis Handbook II. Athens, MicroMacro Publishing Inc.
 
Möller Kurt, Müller Torsten (2012): Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences, 12, 242-257 https://doi.org/10.1002/elsc.201100085
 
Pantelopoulos Athanasios, Magid Jakob, Jensen Lars Stoumann (2016): Thermal drying of the solid fraction from biogas digestate: Effects of acidification, temperature and ventilation on nitrogen content. Waste Management, 48, 218-226 https://doi.org/10.1016/j.wasman.2015.10.008
 
Prasad M., O'Shea J. (1999): RELATIVE BREAKDOWN OF PEAT AND NON-PEAT GROWING MEDIA. Acta Horticulturae, , 121-128 https://doi.org/10.17660/ActaHortic.1999.481.10
 
Rainbow A. (2009): THE USE OF GREEN COMPOST IN THE PRODUCTION OF CONTAINER NURSERY STOCK IN THE UK: CHALLENGES AND OPPORTUNITIES. Acta Horticulturae, , 27-32 https://doi.org/10.17660/ActaHortic.2009.819.2
 
Restrepo A. P., Medina E., Pérez-Espinosa A., Agulló E., Bustamante M. A., Mininni C., Bernal M. P., Moral R. (2013): Substitution of Peat in Horticultural Seedlings: Suitability of Digestate-Derived Compost from Cattle Manure and Maize Silage Codigestion. Communications in Soil Science and Plant Analysis, 44, 668-677 https://doi.org/10.1080/00103624.2013.748004
 
Schmilewski G. (2008): The role of peat in assuring the quality of growing media. Mires and Peat, 3: 1–8.
 
Smith Brandon R., Fisher Paul. R., Argo William R. (2004): Growth and Pigment Content of Container-grown Impatiens and Petunia in Relation to Root Substrate pH and Applied Micronutrient Concentration. HortScience, 39, 1421-1425 https://doi.org/10.21273/HORTSCI.39.6.1421
 
Sonneveld C., Voogt W. (2009): Plant nutrition of greenhouse crops. Netherlands, Springer Netherlands.
 
Šrámek F., Dubský M. (2009a): Peat substrates amended with composted bark or with compost. Acta Horticulturae (ISHS), 819: 387–394.
 
Šrámek F., Dubský M. (2009b): Occurrence and correction of chlorosis in young petunia plants. Horticultural Science (Prague), 36: 147–153.
 
Torres-Climent Angel, Martin-Mata Julio, Marhuenda-Egea Frutos, Moral Raul, Barber Xavier, Perez-Murcia Maria Dolores, Paredes Concepción (2015): Composting of the Solid Phase of Digestate from Biogas Production: Optimization of the Moisture, C/N Ratio, and pH Conditions. Communications in Soil Science and Plant Analysis, 46, 197-207 https://doi.org/10.1080/00103624.2014.988591
 
Verdonck O., Penninck R., de Boodt M. (1983): The physical properties of different horticultural growing substrates. Acta Horticulturae (ISHS), 150: 155–160.
 
Verlinden S. (2003): Changes in mineral nutrient concentrations in petunia corollas during development and senescence. Hortscience, 38: 71–74.
Vetanovetz R.P. (1996): Tissue analysis and interpretation. In: Reed D.W. (ed.): Water, media, and nutrition for greenhouse crops. Batavia, Ball Publishing: 197–220.
 
Weiland Peter (2010): Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, 85, 849-860 https://doi.org/10.1007/s00253-009-2246-7
 
download PDF

© 2019 Czech Academy of Agricultural Sciences