Identification of chemical components in Dianthus determined by widely targeted metabolomics

https://doi.org/10.17221/27/2021-HORTSCICitation:

Zhou X.H., Yang X.M., Sun R.F., Wang J.L., Mao Y., Cao G.H., Wang M.M. (2022): Identification of chemical components in Dianthus determined by widely targeted metabolomics. Hort. Sci. (Prague), 49: 71–77.

supplementary materialdownload PDF

The chemical composition of the secondary metabolites is of great significance to the quality control of agricultural products. The genus Dianthus is famous for its beautiful flowers in the cut flower trade and also used in the traditional Chinese medicinal system and food market. However, the chemical composition in Dianthus is still unknown. The current study examined the levels of different metabolites of the flowers in Dianthus caryophyllus, Dianthus chinensis and Dianthus superbus via the use of the widely targeted metabolomic strategy. We obtained the structure and content of 423 metabolites in Dianthus, which included the primary and secondary metabolites. The principal component analysis was able to clearly seperate Dianthus caryophyllus, Dianthus chinensis and Dianthus superbus based on the flower metabolites. The differential metabolites can be categorised into 11 different classes, the majority were flavonoids, amino acids and their derivatives, phenolic acids and lipids. The results of this study provide important information for the effective use of Dianthus flowers in edible, medicinal and therapeutic aspects.

References:
Al-Snafi A. (2017): Chemical contents and medical importance of Dianthus caryophyllus – A review. IOSR Journal of Pharmacy, 7: 61–71. https://doi.org/10.9790/3013-0703016171
 
Alabdulkarim B., Bakeet Z.A.N., Arzoo S. (2012): Role of some functional lipids in preventing diseases and promoting health. Journal of King Saud University – Science, 24: 319–329. https://doi.org/10.1016/j.jksus.2012.03.001
 
Barakat A., Shoman S., Abd-Elshafy D., Alfarouk O. (2009): Antiviral activity and mode of action of Dianthus caryophyllus L. and Lupinus termes L. seed extracts against in vitro herpes simplex and hepatitis a viruses infection. Journal Microbiology and Antimicrobials, 2: 23–29.
 
Brittenden J., Park K.G.M., Heys S.D., Ross C., Eremin O. (1994): L-arginine stimulates host defenses in patients with breast cancer. Surgery, 115: 205–212.
 
Chandra S., Rawat D.S., Chandra D., Rastogi J. (2016): Nativity, phytochemistry, ethnobotany and pharmacology of Dianthus caryophyllus. Research Journal of Medicinal Plant, 10: 1–9. https://doi.org/10.3923/rjmp.2016.1.9
 
D’Amelia V., Aversano R., Chiaiese P., Carputo D. (2018): The antioxidant properties of plant flavonoids: Their exploitation by molecular plant breeding. Phytochemistry Reviews, 17: 611–625. https://doi.org/10.1007/s11101-018-9568-y
 
Ding C., Zhang W., Li J., Lei J., Yu J. (2013): Cytotoxic constituents of ethyl acetate fraction from Dianthus superbus. Natural Product Reports, 27: 1691–1694. https://doi.org/10.1080/14786419.2012.763127
 
Fernandes L., Pereira J.A., Saraiva J.A., Ramalhosa E., Casal S. (2019): Phytochemical characterization of Borago officinalis L. and Centaurea cyanus L. during flower development. Food Research International, 123: 771–778. https://doi.org/10.1016/j.foodres.2019.05.014
 
Finkelstein J., Heemels M.-T., Shadan S., Weiss U. (2014): Lipids in health and disease. Nature, 510: 47. https://doi.org/10.1038/510047a
 
Gou J., Zou Y., Ahn J. (2011): Enhancement of antioxidant and antimicrobial activities of Dianthus superbus, Polygonum aviculare, Sophora flavescens, and Lygodium japonicum by pressure-assisted water extraction. Food Science and Biotechnology, 20: 283–287. https://doi.org/10.1007/s10068-011-0040-7
 
Hayakawa K., Kimura M., Kamata K. (2002): Mechanism underlying gamma-aminobutyric acid-induced antihypertensive effect in spontaneously hypertensive rats. European Journal of Pharmacology, 438: 107–113. https://doi.org/10.1016/S0014-2999(02)01294-3
 
Kamei Y., Hatazawa Y., Uchitomi R., Yoshimura R., Miura S. (2020): Regulation of skeletal muscle function by amino acids. Nutrients, 12: 261. https://doi.org/10.3390/nu12010261
 
Kazuhito H., Masayuki K., Keiko K., Keisuke M., Hiroshi S., Yukio Y. (2004): Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar–Kyoto rats. British Journal of Nutrition, 92: 411–417. https://doi.org/10.1079/BJN20041221
 
Koike A.C.R. (2019): Antioxidant activity of Dianthus chinensis flowers processed by ionizing radiation. Brazilian Journal of Radiation Sciences, 7: 1–9. https://doi.org/10.15392/bjrs.v7i2A.674
 
Kozłowska A., Szostak-Wegierek D. (2014): Flavonoids-food sources and health benefits. Roczniki Panstwowego Zakadu Higieny, 65: 79–85.
 
Kumar N., Goel N. (2019): Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24: e00370. https://doi.org/10.1016/j.btre.2019.e00370
 
López-Expósito I., Castillo A., Yang N., Liang B., Li X. (2011): Chinese herbal extracts of Rubia cordifolia and Dianthus superbus suppress IgE production and prevent peanut-induced anaphylaxis. Chinese Medicine, 6: 35. https://doi.org/10.1186/1749-8546-6-35
 
Leehuang S., Kung H., Huang P.L., Huang P.L., Li B., Huang P., Huang H.I., Chen H. (1991): A new class of anti-HIV agents: GAP31, DAPs 30 and 32. FEBS Letters, 291: 139–144. https://doi.org/10.1016/0014-5793(91)81122-O
 
Li P., Yin Y.L., Li D., Kim S.W., Wu G. (2007): Amino acids and immune function. British Journal of Nutrition, 98: 237–252.
 
Lu B., Li M., Yin R. (2015): Phytochemical content, health benefits, and toxicology of common edible flowers: A Review (2000–2015). Critical Reviews in Food Science and Nutrition, 56: 130–148.
 
Luckose F., Pandey M.C., Radhakrishna K. (2015): Effects of amino acid derivativeson physical, mental, and physiological activities. Critical Reviews in Food Science and Nutrition, 55: 1793–1807. https://doi.org/10.1080/10408398.2012.708368
 
Martineti V., Tognarini I., Azzari C., Sala S.C., Clematis F., Dolci M., Lanzotti V., Tonelli F., Brandi M.L., Curir P. (2010): Inhibition of in vitro growth and arrest in the G0/G1 phase of HCT8 line human colon cancer cells by kaempferide triglycoside from Dianthus caryophyllus. Phytotherapy Research, 24: 1302–1308. https://doi.org/10.1002/ptr.3105
 
Meurer C.M., Mees M., Mariano L.N.B., Boeing T., Somensi L.B., Mariott M., da Silva R.d.C.M.V.d.A.F., dos Santos A.C., Longo B., Santos França T.C., Klein-Júnior L.C., de Souza P., de Andrade S.F., da Silva L.M. (2019): Hydroalcoholic extract of Tagetes erecta L. flowers, rich in the carotenoid lutein, attenuates inflammatory cytokine secretion and improves the oxidative stress in an animal model of ulcerative colitis. Nutrition Research, 66: 95–106. https://doi.org/10.1016/j.nutres.2019.03.005
 
Mutlu K., Sarikahya N.B., Yasa I., Kirmizigul S. (2016): Dianthus erinaceus var. erinaceus: Extraction, isolation, characterization and antimicrobial activity investigation of novel saponins. Phytochemistry Letters, 16: 219–224. https://doi.org/10.1016/j.phytol.2016.04.020
 
Nguyen C., Baskaran K., Pupulin A., Ruvinov I., Zaitoon O., Grewal S., Scaria B., Mehaidli A., Vegh C., Pandey S. (2019): Hibiscus flower extract selectively induces apoptosis in breast cancer cells and positively interacts with common chemotherapeutics. BMC Complementary and Alternative Medicine, 19: 98. https://doi.org/10.1186/s12906-019-2505-9
 
Ninomiya K. (2016): Food Science of Dashi and Umami Taste. Yakugaku zasshi Journal of the Pharmaceutical Society of Japan, 136: 1327–1334. https://doi.org/10.1248/yakushi.16-00057-1
 
Nowicka P., Wojdyło A. (2019): Anti-hyperglycemic and anticholinergic effects of natural antioxidant contents in edible flowers. Antioxidants, 8: 308. https://doi.org/10.3390/antiox8080308
 
Phonsatta N., Deetae P., Luangpituksa P., Grajeda Iglesias C., Figueroa-Espinoza M.C., Lecomte J., Villeneuve P., Decker E.A., Visessanguan W., Panya A. (2017): Comparison of antioxidant evaluation assays for investigating antioxidative activity of gallic acid and its alkyl esters in different food matrices. Journal of Agricultural and Food Chemistry, 65: 7509–7518. https://doi.org/10.1021/acs.jafc.7b02503
 
Rop O., Mlcek J., Jurikova T., Neugebauerova J., Vabkova J. (2012): Edible flowers-a new promising source of mineral elements in human nutrition. Molecules, 17: 6672–6683. https://doi.org/10.3390/molecules17066672
 
Rosa L.D.S., Silva N.J.A., Soares N.C.P., Monteiro M.C., Teodoro A.J. (2016): Anticancer properties of phenolic acids in colon cancer – a review. Journal of Nutrition & Food Sciences, 6: 2.
 
Saibabu V., Fatima Z., Khan L.A., Hameed S. (2015): Therapeutic potential of dietary phenolic acids. Advances in Pharmacological Sciences, ID: 823539. Sánchez-Guerrero I.M., Escudero A.I., Bartolom; B., Palacios  R. (1999): Occupational allergy caused by carnation (Dianthus caryophyllus). Journal of Allergy & Clinical Immunology, 104: 181–185.
 
Tong Y., Luo J.G., Wang R., Wang X.B., Kong L.Y. (2012): New cyclic peptides with osteoblastic proliferative activity from Dianthus superbus. Bioorganice and Medicinal Chemistry Letters, 22: 1908–1911. https://doi.org/10.1016/j.bmcl.2012.01.058
 
Wang D., Zhang L., Huang X., Wang X., Yang R., Mao J., Wang X., Wang X., Zhang Q., Li P. (2018): Identification of nutritional components in black sesame determined by widely targeted metabolomics and traditional Chinese medicines. Molecules, 23: 1180. https://doi.org/10.3390/molecules23051180
 
Wang Y., Li X., Li Y., Fan Y., Li Y., Cao Y., An W. Shi Z., Zhao J., Guo S. (2020): Changes in metabolome and nutritional quality of lycium barbarum fruits from three typical growing areas of China as revealed by widely targeted metabolomics. Metabolites, 10: 46. https://doi.org/10.3390/metabo10020046
 
Waraho T., Mcclements D.J., Decker E.A. (2011): Mechanisms of lipid oxidation in food dispersions. Trends in Food Science & Technology, 22: 3–13.
 
Weon J.B., Ma C.J. (2016): Simultaneous determination of eight bioactive compounds isolated from Dianthus superbus by high-performance liquid chromatography. Planta Medica, 82: P1053.
 
Wetzel K., Lee J., Lee C.S., Binkley M. (2010): Comparison of microbial diversity of edible flowers and basil grown with organic versus conventional methods. Canadian Journal of Microbiology, 56: 943–951. https://doi.org/10.1139/W10-082
 
Yang P., Yang Y., Feng Z., Jiang J., Zhang P. (2019): Six new compounds from the flowers of Chrysanthemum morifolium and their biological activities. Bioorganic Chemistry, 82: 139–144. https://doi.org/10.1016/j.bioorg.2018.10.007
 
Yu J., Liao Z., Lei J., Hu X. (2007): Antioxidant and cytotoxic activities of various fractions of ethanol extract of Dianthus superbus. Food Chemistry, 104: 1215–1219. https://doi.org/10.1016/j.foodchem.2007.01.039
 
Yu J., Yin Y., Lei J., Zhang X., Chen W., Ding C., Wu S., He X., Liu Y., Zou G. (2012): Activation of apoptosis by ethyl acetate fraction of ethanol extract of Dianthus superbus in HepG2 cell line. Cancer Epidemiology, 36: e40–e45.
 
Zhang A., Sun H., Wang Z., Sun W., Wang P., Wang X. (2010): Metabolomics: Towards understanding traditional Chinese medicine. Planta Medica, 76: 2026–2035. https://doi.org/10.1055/s-0030-1250542
 
Zou S., Wu J., Shahid M.Q., He Y., Lin S., Liu Z., Yang X. (2020): Identification of key taste components in loquat using widely targeted metabolomics. Food Chemistry, 323: 126822. https://doi.org/10.1016/j.foodchem.2020.126822
 
supplementary materialdownload PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti