Generative propagation and fertilisation of Stipeae species – wild grasses with ornamental potential

https://doi.org/10.17221/28/2020-HORTSCICitation:

Kapczyńska A., Stodolak B. (2021): Generative propagation and fertilisation of Stipeae species – wild grasses with ornamental potential. Hort. Sci. (Prague), 48: 126–133.

download PDF

The wild grasses are of increasing interest among landscape architects. The appropriate plant selection is crucial for the subsequent survival and growth of plants in grassy gardens. The aim of the experiment was to assess the influence of seed age (1–3-year old seeds) on the germination of three Stipeae species: Eriocoma occidentalis subsp. californica, Stipa pulcherrima and Hesperostipa curtiseta. The seed weight and germination percentage showed a decline over a period of seed storage. There was 31–84% (depending on species) loss in germinability of 3-year old seeds in comparison to 1-year old seeds. After germination, plants were repotted and treated with Osmocote (a slow-release fertiliser, N15 + P10 + K12). The results indicated that fertilisation significantly increased the number of roots, stems, leaf length, leaf dry weight, chlorophylls and proline content. None of the tested species flowered in the year of sowing but in the next growing season. Plants fertilised in the previous year formed more and of better quality inflorescence stems.

References:
Alaei Y., Khanghah A.M., Jafari M., Khaneghah A.M. (2012): Evaluation on leaf proline amount in three bread wheat cultivarsin presence of two fertilisers containing amino acids in drought stress. World Applied Sciences Journal, 18: 1190–1192.
 
Arnon D.T. (1949): Copper enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris L. Plant Physiology, 24: 1–15. https://doi.org/10.1104/pp.24.1.1
 
Bartolome J.W. (1981): Stipa pulchra, a survivor from the pristine prairie. Fremontia a Journal of the California Native Plant Society, 9: 3–6.
 
Bates L.S., Waldren R.P., Teare I.D. (1973): Rapid determination of free proline for water- stress studies. Plant Soil, 39: 205–207. https://doi.org/10.1007/BF00018060
 
Dar M.I., Naikoo M.I., Rehman F., Naushin F., Khan F.A. (2016): Proline accumulation in plants: roles in stress tolerance and plant development. In: N. Iqbal et al. (eds): Osmolytes and plants acclimation to changing environment: emerging omics technologies. India, Springer: 155–166.
 
de Souza I.A., Ribeiro K.G., Rocha W.W., do Carmo Araújo S.A., Pereira O.G., Cecon P.R. (2016): Forage mass, chemical composition and leaf chlorophyll index of signal grass and organic matter in soil under increasing levels of nitrogen. Semina: Ciências Agrárias, Londrina, 37: 1505–1514 . https://doi.org/10.5433/1679-0359.2016v37n3p1505
 
Fowler N.L., Clay K. (1995): Environmental heterogeneity, fungal parasitism and the demography of the grass Stipa leucotricha. Oecologia, 103: 55–62. https://doi.org/10.1007/BF00328425
 
Fulbricht T.E., Redente E.F., Wilson A.M. (1983): Germination requirements of green needlegrass (Stipa viridula Trin.). Journal of Range Management, 38: 390–394.
 
Gasque M., García-Fayos P. (2003): Seed dormancy and longevity in Stipa tenacissima L. (Poaceae). Plant Ecology, 168: 279–290. https://doi.org/10.1023/A:1024471827734
 
Gould K., Wood S., Smreciu A. (2013): Hesperostipa curtiseta: western porcupine grass, Canadian needle grass, short bristle needle and thread. Type of item: Report. https://doi.org/10.7939/R3R785Q6H
 
Harvey M.P., Elliott G.C., Brand M.H. (2004): Growth response of Hakonechloa macra (Makino) ‘Aureola’’ to fertiliser formulation and concentration, and to dolomitic lime in the potting mix. HortScience, 39: 261–266. https://doi.org/10.21273/HORTSCI.39.2.261
 
Jacobs S., Bayer R., Everett J., Arriaga M., Barkworth M., Sabin-Badereau A., Torres A., Vázquez F., Bagnall N. (2007): Systematics of the tribe Stipeae (Gramineae) using molecular data. Aliso: A Journal of Systematic and Evolutionary Botany, 23: 349– 361. https://doi.org/10.5642/aliso.20072301.28
 
Jiao S.Y., Li Y.Q., Shayila S., Chen X.L. (2009): Seeds germination and seedling growth about 3 Pennisetum ornamental grasses under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 29: 308–313.
 
Kapczyńska A. (2012): Effect of seed age and fertilisation on the growth and decorative quality of selected ornamental grasses. Folia Horticulturae, 24: 73–80. https://doi.org/10.2478/v10245-012-0011-3
 
Kapczyńska A., Kowalska I, Prokopiuk B., Pawłowska B. (2020): Rooting media and biostimulator Goteo treatment effect the adventitious root formation of Pennisetum ‘Vertigo’ cuttings and the quality of the final product. Agriculture, 10: 570.  https://doi.org/10.3390/agriculture10110570
 
Kurek K., Plitta-Michalak B., Ratajczak E. (2019): Reactive oxygen species as potential drivers of the seed aging process. Plants, 8: Article 174. https://doi.org/10.3390/plants8060174
 
Lamichhane J.R., Debaeke P., Steinberg C., You M.P., Barbetti M.J., Aubertot J.N (2018): Abiotic and biotic factors affecting crop seed germination and seedling emergence: a conceptual framework. Plant Soil, 432: 1–28. https://doi.org/10.1007/s11104-018-3780-9
 
Nagel M., Kodde J., Pistrick S., Mascher M., Börner A., Groot S.P.C. (2016): Barley seed aging: genetics behind the dry elevated pressure of oxygen aging and moist controlled deterioration. Frontiers in Plant Science, 7: Article 388. https://doi.org/10.3389/fpls.2016.00388
 
Novák J., Prach K. (2010): Artificial sowing of endangered dry grassland species in to disused basalt quarries. Flora, 205: 179–183. https://doi.org/10.1016/j.flora.2009.03.003
 
Peterson P.M., Romaschenko K., Soreng R.J., Reyna J. V. (2019): A key to the North American genera of Stipeae (Poaceae, Pooideae) with descriptions and taxonomic names for species of Eriocoma, Neotrinia, Oloptum, and five new genera: Barkworthia, ×Eriosella, Pseudoeriocoma, Ptilagrostiella, and Thorneochloa. PhytoKeys, 126: 89–125 https://doi.org/10.3897/phytokeys.126.34096
 
Pipper H. (1952): Das Saatgut. Parey P. (Ed.). Berlin, Germany.
 
Rady M.M. (2012): A novel organo-mineral fertiliser can mitigate salinity stress effects for tomato production on reclaimed saline soil. South African Journal of Botany, 81: 8–14. https://doi.org/10.1016/j.sajb.2012.03.013
 
Serraj R., Sinclair T.R. (2002): Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell and Environment, 25: 333–341.
 
Skiba K., Szwed G., Tys J. (2005): Zmiany cech jakościowych zanieczyszczonych nasion rzepaku podczas procesu przechowywania. [Changes in the quality features of impure rapeseeds during storage.] Acta Agrophysica, 6: 785–795.
 
Thetford M., Knox G.W., Duke E.R. (2011): Ornamental grasses show minimal response to cultural inputs. HortTechnology, 21: 443–450. https://doi.org/10.21273/HORTTECH.21.4.443
 
Wojtyla Ł., Lechowska K., Kubala Sz., Garnczarska M. (2016): Different modes of hydrogen peroxide action during seed germination. Frontiers in Plant Science, 7: article 66.
 
Zhou W., Chen F., Luo X., Dai Y., Yang Y., Zheng C., Yang W., Shu K. (2020): A matter of life and death: molecular, physiological, and environmental regulation of seed longevity. Plant Cell and Environment, 43: 293–302. https://doi.org/10.1111/pce.13666
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti