Alleviation of allelochemical stress-induced growth inhibition and oxidative damage in lettuce under closed hydroponics through electro-degradation
Abenavoli M.R., Cacco G., Sorgona A., Marabottini R., Paolacci A.R., Ciaffi M., Badiani M. (2006): The inhibitory effects of coumarin on the germination of durum wheat (Triticum turgidum ssp. durum, cv. Simeto) seeds. Journal of Chemical Ecology, 32: 489–506.
https://doi.org/10.1007/s10886-005-9011-x
Ahmed I.M., Cao F., Zhang M., Chen X., Zhang G., Wu F. (2013): Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. PLOS ONE, 8: e77869.
https://doi.org/10.1371/journal.pone.0077869
Apel K., Hirt H. (2004): Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55: 373–399.
https://doi.org/10.1146/annurev.arplant.55.031903.141701
Asaduzzaman M., Kobayashi Y., Isogami K., Tokura M., Tokumasa K., Asao T. (2012): Growth and yield recovery in strawberry plants under autotoxicity through electro-degradation. European Journal of Horticultural Science, 77: 58–67.
Asao T., Kitazawa H., Ban T., Pramanik M.H.R. (2004b): Search of autotoxic substances in some leaf vegetables. Journal of the Japanese Society for Horticultural Science, 73: 247–249.
https://doi.org/10.2503/jjshs.73.247
Asao T., Kitazawa H., Ban T., Pramanik M.H.R. (2008): Electro-degradation of root exudates to mitigate autotoxicity in hydroponically grown strawberry (Fragaria × ananassa Duch.) plants. HortScience, 43: 2034–2038.
https://doi.org/10.21273/HORTSCI.43.7.2034
Asao T., Kitazawa H., Tomita K., Suyama K., Yamamoto H., Hosoki T., Pramanik M.H.R. (2004a): Mitigation of cucumber autotoxicity in hydroponic culture using microbial strain. Scientia Horticulturae, 99: 207–214.
https://doi.org/10.1016/S0304-4238(03)00098-0
Asao T., Kitazawa H., Ushio K., Sueda Y., Ban T., Pramanik M.H.R. (2007): Autotoxicity in some ornamentals with means to overcome it. HortScience, 42: 1346–1350.
https://doi.org/10.21273/HORTSCI.42.6.1346
Asao T., Umeyama M., Ohta K., Hosoki T., Ito T., Ueda H. (1998): Decrease of yield of cucumber by non-renewal of the nutrient hydroponic solution and its reversal by supplementation of activated charcoal. Journal of the Japanese Society for Horticultural Science, 67: 99–105. (in Japanese with English summary).
https://doi.org/10.2503/jjshs.67.99
Ashraf M., Harris P. (2004): Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166: 3–16.
https://doi.org/10.1016/j.plantsci.2003.10.024
Bais H.P., Vepachedu R., Gilroy S., Callaway R.M., Vivanco J.M. (2003): Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 301: 1377–1380.
https://doi.org/10.1126/science.1083245
Barkosky R.R., Einhellig F.A. (1993): Effects of salicylic acid on plant-water relationships. Journal of Chemical Ecology, 19: 237–247.
https://doi.org/10.1007/BF00993692
Batish D.R., Singh H.P., Setia N., Kaur S., Kohli R.K. (2006): 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiology and Biochemistry, 44: 819–827.
https://doi.org/10.1016/j.plaphy.2006.10.014
Baziramakenga R., Leroux G.D., Simard R.R. (1995): Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. Journal of Chemical Ecology, 21: 1271–1285.
https://doi.org/10.1007/BF02027561
Baziramakenga R., Simard R.R., Leroux G.D. (1994): Effects of benzoic and cinnamic acids on growth, mineral composition and chlorophyll content of soybean roots. Journal of Chemical Ecology, 20: 2821–2833.
https://doi.org/10.1007/BF02098391
Bertin C., Yang X.H., Weston L.A. (2003): The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil, 256: 67–83.
https://doi.org/10.1023/A:1026290508166
Bertoldi F.C., Sant’Anna E., Barcelos-Oliveira J.L. (2009): Chlorella vulgaris cultivated in hydroponic wastewater. In: Rodriguez-Delfin A., Martinez P.F. (eds): Proceedings of IS on Soilless Culture and Hydroponics. Acta Horticuturae (ISHS), 843: 373–380.
Blum U. (2005): Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: nutrient culture studies. Journal of Chemical Ecology, 31: 1907–1932.
https://doi.org/10.1007/s10886-005-5934-5
Blum U., Shafer R., Lehmen M.E. (1999): Evidence for inhibitory allelopathic interactions including phenolic acids in field soils: Concept vs. an experimental model. Critical Reviews in Plant Sciences, 18: 673–693.
https://doi.org/10.1080/07352689991309441
Böhm P.A.F., Zanado F.M.L., Ferrarese M.L.L., Ferrarese-Filho O. (2006): Peroxidase activity and lignification in soybean root growth-inhibition by juglone. Biologia Plantarum, 50: 315–317.
https://doi.org/10.1007/s10535-006-0029-x
Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254.
https://doi.org/10.1016/0003-2697(76)90527-3
Chi W.C., Fu S.F., Huang T.L., Chen Y.A., Chen C.C., Huang H.J. (2011): Identification of transcriptome profiles and signaling pathways for the allelochemical juglone in rice roots. Plant Molecular Biology, 77: 591–607.
https://doi.org/10.1007/s11103-011-9841-6
Cruz-Ortega R., Ayala-Cordero G., Anaya A.L. (2002): Allelochemical stress produced by the aqueous leachate of Callicarpa acuminata: Effects on roots of bean, maize, and tomato. Physiologia Plantarum, 116: 20–27.
https://doi.org/10.1034/j.1399-3054.2002.1160103.x
Cruz-Ortega R., Lara-Núñez A., Anaya A.L. (2007): Allelochemical stress can trigger oxidative damage in receptor plants. Plant Signaling & Behavior, 2: 269–270.
Ding J., Sun Y., Xiao C.L., Shi K., Zhou Y.H., Yu J.Q. (2007): Physiological basis of different allelopathic reactions of cucumber and fig leaf gourd plants to cinnamic acid. Journal of Experimental Botany, 58: 3765–3773.
https://doi.org/10.1093/jxb/erm227
Doblinski P.M.F., Ferrarese M.L.L., Huber D.A., Scapim C.A., Braccini A.L., Ferrarese F.O. (2003): Peroxidase and lipid peroxidation of soybean roots in response to p-coumaric and p-hydroxybenzoic acids. Brazilian Archives of Biology and Technology, 46: 193–198.
https://doi.org/10.1590/S1516-89132003000200009
Dorning M., Cipollini D. (2006): Leaf and root extracts of the invasive shrub Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects. Plant Ecology, 184: 287–296.
https://doi.org/10.1007/s11258-005-9073-4
Foreman J., Demidchik V., Bothwell J.H., Mylona P., Miedema H., Torres M.A., Linstead P., Costa S., Brownlee C., Jones J.D., Davies J.M., Dolan L. (2003): Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422: 442–446.
https://doi.org/10.1038/nature01485
Foyer C., Fletcher J. (2001): Plant antioxidants: colour me healthy. Biologist (London), 48: 115–120.
Gniazdowska A., Bogatek R. (2005): Allelopathic interaction between plants. Multi-site action of allelochemicals. Acta Physiologiae Plantarum, 27: 395–408.
https://doi.org/10.1007/s11738-005-0017-3
Gossett D.R., Millhollon E.P., Lucas M.(1994): Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton. Crop Science, 34: 706–714.
https://doi.org/10.2135/cropsci1994.0011183X003400030020x
Halliwell B. (2006): Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141: 312–322.
https://doi.org/10.1104/pp.106.077073
Holappa L.D., Blum U. (1991): Effects of exogenously applied ferulic acid, a potential allelopathic compound, on leaf growth, water utilization, and endogenous abscisic acid levels of tomato, cucumber, and beans. Journal of Chemical Ecology, 17: 865–886.
https://doi.org/10.1007/BF01395596
Hong Y., Hu H.Y., Xie X., Li F.M. (2008): Responses of enzymatic antioxidants and non-enzymatic antioxidants in the cyanobacterium Microcystis aeruginosa to the allelochemical ethyl 2-methyl acetoacetate (EMA) isolated from reed (Phragmites communis). Journal of Plant Physiology, 165: 1264–1273.
https://doi.org/10.1016/j.jplph.2007.10.007
Hori Y. (1966): Gravel culture of vegetables and ornamentals. 3. Nutrient solution. Yokendo, Tokyo, Japan: 69–80. (in Japanese).
Inderjit (1996): Plant phenolics in allelopathy. The Botanical Review, 62: 186–202.
https://doi.org/10.1007/BF02857921
Inderjit, Duke S.O. (2003): Ecophysiological aspect of allelopathy. Planta, 217: 529–539.
https://doi.org/10.1007/s00425-003-1054-z
Inderjit, Weston L.A. (2003): Root exudates: an overview. In: de Kroon H., Visser E.J.W. (eds): Root ecology. Ecological Studies (Analysis and Synthesis), Vol. 168, Springer, Verlag Berlin, Heidelberg, New York: 235–255.
Jiang M., Zhang J. (2002): Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany, 53: 2401–2410.
https://doi.org/10.1093/jxb/erf090
Kitazawa H., Asao T., Ban T., Pramanik M.H.R., Hosoki T. (2005): Autotoxicity of root exudates from strawberry in hydroponic culture. The Journal of Horticultural Science and Biotechnology, 80: 677–680.
https://doi.org/10.1080/14620316.2005.11511997
Lara-Núñez A., Romero-Romero T., Ventura J.L., Blancas V., Anaya A.L., Cruz-Ortega R. (2006): Allelochemical stress causes inhibition of growth and oxidative damage in Lycopersicon esculentum Mill. Plant, Cell & Environment, 29: 2009–2016.
Lee J.G., Lee B.Y., Lee H.J. (2006): Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.). Scientia Horticulturae, 110: 119–128.
https://doi.org/10.1016/j.scienta.2006.06.013
Li F.M., Hu H.Y. (2005): Isolation and characterization of a novel anti algal allelochemical from Phragmites communis. Applied and Environmental Microbiology, 71: 6545–6553.
https://doi.org/10.1128/AEM.71.11.6545-6553.2005
Lin W.X., Kim K.U., Sgub D.G. (2000): Rice allelopathic potential and its modes of action on barnyardgrass (Echinochloa crusgalli). Allelopathy Journal, 7: 215–224.
Lyu S.W., Blum U. (1990): Effects of ferulic acid, an allelopathic compound, on net P, K, and water uptake by cucumber seedlings in a split-root system. Journal of Chemical Ecology, 16: 2429–2439.
https://doi.org/10.1007/BF01017466
Mersie W., Singh M. (1993): Phenolic acids affect photosynthesis and protein synthesis by isolated leaf cells of velvet leaf. Journal of Chemical Ecology, 19: 1293–1301.
https://doi.org/10.1007/BF00984876
Mittler R. (2002): Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7: 405–410.
https://doi.org/10.1016/S1360-1385(02)02312-9
Mondal F.M., Asaduzzaman M., Kobayashi Y., Ban T., Asao T. (2013): Recovery from autotoxicity in strawberry by supplementation of amino acids. Scientia Horticulturae, 164: 137–144.
https://doi.org/10.1016/j.scienta.2013.09.019
Mylona P.V., Polidoros A.N., Scandalios J.G. (2007): Antioxidant gene responses to ROS-generating xenobiotics in developing and germinated scutella of maize. Journal of Experimental Botany, 58: 1301–1312.
https://doi.org/10.1093/jxb/erl292
Nakano Y., Asada K. (1981): Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22: 867–880.
Oracz K., Bailly C., Gniazdowska A., Come D., Corbineau F., Bogatek R. (2007): Induction of oxidative stress by sunflower phytotoxins in germinating mustard seeds. Jounal of Chemical Ecology, 33: 251–264.
https://doi.org/10.1007/s10886-006-9222-9
Ozkur O., Ozdemir F., Bor M., Turkan I. (2009): Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environmental and Experimental Botany, 66: 487–492.
https://doi.org/10.1016/j.envexpbot.2009.04.003
Penuelas J., Ribas-Carbo M., Giles L. (1996): Effects of allelochemicals on plant respiration and oxygen isotope fractionation by the alternative oxyldase. Journal of Chemical Ecology, 22: 801–805.
https://doi.org/10.1007/BF02033587
Politycka B. (1996): Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by derivatives of cinnamic and benzoic acids. Acta Physiologiae Plantarum, 18: 365–370.
Qian H., Xu X., Chen W., Jiang H., Jin Y., Liu W., Fu Z. (2009): Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Clorella vulgaris. Chemosphere, 75: 368–375.
https://doi.org/10.1016/j.chemosphere.2008.12.040
Rhoads D.M., Umbach A.L., Subbaiah C.C., Siedow J.N. (2006): Mitochondrial reactive oxygen species: contribution to oxidative stress and inter organellar signaling. Plant Physiology, 141: 357–366.
https://doi.org/10.1104/pp.106.079129
Rohn S., Rawel H.M., Kroll J. (2002): Inhibitory effects of plant phenols on the activity of selected enzymes. Journal of Agricultural and Food Chemistry, 50: 3566–3571.
https://doi.org/10.1021/jf011714b
Romero-Romero T., Sánchez-Nieto S., San Juan-Badillo A., Anaya A.L. (2005): Comparative effects of allelochemical and water stress in roots of Lycopersicon esculentum Mill. (Solanaceae). Plant Science, 168: 1059–1066.
https://doi.org/10.1016/j.plantsci.2004.12.002
Russel D.F. (1986): M-STAT Director. Crop and Soil Science Department, Michigan, State University, U.S.A.
Sánchez-Moreiras A.M., Reigosa M.J. (2005): Whole plant response of lettuce after root exposure to BOA (2(3H)-Benzoxazolinone). Journal of Chemical Ecology, 31: 2689–2703.
https://doi.org/10.1007/s10886-005-7620-z
Scandalios J. (2005): Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38: 995–1014.
https://doi.org/10.1590/S0100-879X2005000700003
Singh H.P., Batish D.R., Kaur S., Arora K., Kohli R.K. (2006): α-Pinene inhibits growth and induces oxidative stress in roots. Annals of Botany, 98: 1261–1269.
https://doi.org/10.1093/aob/mcl213
Singh H.P., Batish D.R., Kohli R.K. (1999): Autotoxicity: concept, organisms and ecological significance. Critical Reviews in Plant Sciences, 18: 757–772.
https://doi.org/10.1080/07352689991309478
Singh N.K., Bracker C.A., Hasegawa P.M., Handa A.K., Buckel S., Hermodson M.A. (1987): Characterization of osmotin: a thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiology, 85: 529–536.
https://doi.org/10.1104/pp.85.2.529
Talukder M.R., Asaduzzaman M., Tanaka H., Asao T. (2018): Light-emitting diodes and exogenous amino acids application improve growth and yield of strawberry plants cultivated in recycled hydroponics. Scientia Horticulturae, 239: 93–103.
https://doi.org/10.1016/j.scienta.2018.05.033
Talukder M.R., Asaduzzaman M., Tanaka H., Asao T. (2019a): Electro-degradation of culture solution improves growth, yield and quality of strawberry plants grown in closed hydroponics. Scientia Horticulturae, 243: 243–251.
https://doi.org/10.1016/j.scienta.2018.08.024
Talukder M.R., Asaduzzaman M., Tanaka H., Asao T. (2019b): Application of alternating current electro-degradation improves retarded growth and quality in lettuce under autotoxicity in successive cultivation. Scientia Horticulturae, 252: 324–331.
https://doi.org/10.1016/j.scienta.2019.04.001
Tang C.S., Young C.C. (1982): Collection and identification of allelopathic compounds from the undisturbed root system of bitaltalimpograss (Helmarthria altissima). Plant Physiology, 69: 155–160.
https://doi.org/10.1104/pp.69.1.155
Weir T.L., Park S.W., Vivanco J.M. (2004): Biochemical and physiological mechanisms mediated by allelochemicals. Current Opinion in Plant Biology, 7: 472–479.
https://doi.org/10.1016/j.pbi.2004.05.007
Willekens H., Chamnongpol S., Davey M., Schraudner M., Langebartels C., Van Montagu M., Inze D., Van Camp W. (1997): Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. The EMBO Journal, 16: 4806–4816.
https://doi.org/10.1093/emboj/16.16.4806
Willekens H., Inzé D., Van Montagu M., Van Camp W. (1995): Catalases in plants. Molecular Breeding, 1: 207–228.
https://doi.org/10.1007/BF02277422
Wu F.B., Zhang G.P., Dominy P. (2003): Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environmental and Experimental Botany, 50: 67–78.
https://doi.org/10.1016/S0098-8472(02)00113-2
Yamamoto Y., Kobayashi Y., Devi S.R., Rikiishi S., Matsumono H. (2003): Oxidative stress triggered by aluminum in plant roots. Plant and Soil, 255: 239–243.
https://doi.org/10.1023/A:1026127803156
Yan X., You-Gen W., Ying C., Jun-Feng Z., Xi-Qiang S., Guo-Peng Z., Xin-Wen H. (2015): Autotoxicity in Pogostemon cablin and their allelochemicals. Revista Brasileira de Farmacognosia, 25: 117–123.
https://doi.org/10.1016/j.bjp.2015.02.003
Yang F., Xu X., Xiao X., Li C. (2009): Responses to drought stress in two poplar species originating from different altitudes. Biologia Plantarum, 53: 511–516.
https://doi.org/10.1007/s10535-009-0092-1
Ye S.F., Yu J.Q., Peng Y.H., Zheng J.H., Zou L.Y. (2004): Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant and Soil, 263: 143–150.
https://doi.org/10.1023/B:PLSO.0000047721.78555.dc
Ye S.F., Zhou Y.H., Sun Y., Zou L.Y., Yu J.Q. (2006): Cinnamic acid causes oxidative stress in cucumber roots and promotes incidence of Fusarium wilt. Environmental and Experimental Botany, 56: 255–262.
https://doi.org/10.1016/j.envexpbot.2005.02.010
Yu J.Q., Matsui Y. (1993): Extraction and identification of phytotoxic substances accumulated in nutrient solution for the hydroponic culture of tomato. Soil Science and Plant Nutrition, 39: 691–700.
https://doi.org/10.1080/00380768.1993.10419186
Yu J.Q., Matsui Y. (1994): Phytotoxic substances in root exudates of cucumber (Cucumis sativus L). Journal of Chemical Ecology, 20: 21–31.
https://doi.org/10.1007/BF02065988
Yu J.Q., Ye S.F., Zhang M.F., Hu W.H. (2003): Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochemical Systematics and Ecology, 31: 129–139.
https://doi.org/10.1016/S0305-1978(02)00150-3
Zeng F., Wu X., Qiu B., Wu F., Jiang L., Zhang G. (2014): Physiological and proteomic alterations in rice (Oryza sativa L.) seedlings under hexavalent chromium stress. Planta, 240: 291–308.
https://doi.org/10.1007/s00425-014-2077-3
Zeng R.S., Luo S.M., Shi Y.H., Shi M.B., Tu C.Y. (2001): Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants. Agronomy Journal, 93: 72–79.
https://doi.org/10.2134/agronj2001.93172x
Zhang S., Zhang B., Dai W., Zhang X. (2011): Oxidative damage and antioxidant responses in Microcystis aeruginosa exposed to the allelochemical berberine isolated from golden thread. Journal of Plant Physiology, 168: 639–643.
https://doi.org/10.1016/j.jplph.2010.10.005
Zhang X.Z. (1992): The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. In: Zhang, X.Z. (ed.), Research methodology of crop physiology. Agriculture Press, Beijing: 208–211.