Molecular analysis of native cultivars of sweet cherry in Southern Italy Vaio C., Villano C., Marallo N. (2015): Molecular analysis of native cultivars of sweet cherry in Southern Italy. Hort. Sci. (Prague), 42: 114-118.
download PDF
Campania region has a long tradition of autochthonous cultivated sweet cherries, which constitute a very rich germplasm resource. This biodiversity is highly valued for flavour, aroma and pulp texture. The interested cultivars are well known and sold in regional and local markets, but rarely outside. Genetic studies and phenotypic classifications are useful tools to increase our knowledge of such cherry cultivars and to disseminate their particular characteristics outside the region. The aim of the present study was the molecular characterization of ten autochthonous cultivars of Prunus avium using 30 RAPD markers. Among all, U17 was useful for fingerprinting eight out of ten cultivars. On cvs Del Monte, Della Recca, Pagliaccio, Montenero, Nera Dura, Mulegnana Nera, Passaguai and Malizia, unique molecular profiles were obtained. Furthermore, it was possible to distinguish between two most important cultivars on the Campanian market (cvs Del Monte and Della Recca) with HAP18 marker. The results obtained in this study confirmed the power of RAPD markers to easily analyse genetic diversity and to find new molecular profiles in a very short time. Moreover, confidential bands, characteristics of Campania native cultivars, can be used for genotype identification.
Cai Y.L., Cao D.W., Zhao G.F. (2007): Studies on genetic variation in cherry germplasm using RAPD analysis. Scientia Horticulturae, 111, 248-254
Di Vaio C., Tramontano A., Iannaccone M., Parlato M., Capparelli R. (2010): Genetic characterization of apricot cultivars using RAPD-PCR marker. Acta Horticulturae (ISHS), 862: 55–60.
dos Santos J. B., Nienhuis J., Skroch P., Tivang J., Slocum M. K. (1994): Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes. Theoretical and Applied Genetics, 87, 909-915
Downey S.L., Iezzoni A.F. (2000): Polymorphic DNA markers in black cherry (Prunus serotina) are identified using sequences from sweet cherry, peach, and sour cherry. Journal of the American Society for Horticultural Science, 125: 76–80.
Doyle J.J., Doyle J.L. (1990): Isolation of plant DNA from fresh tissue. Focus, 12: 13–15.
Ercisli Sezai, Orhan Emine, Esitken Ahmet, Yildirim Nalan, Agar Guleray (2008): Relationships among some cornelian cherry genotypes (Cornus mas L.) based on RAPD analysis. Genetic Resources and Crop Evolution, 55, 613-618
Gerlach H.K., Stösser R. (1997): Patterns of Random Amplified Polymorphic DNAs for sweet cherry (Prunus avium L.) cultivar identification. Journal of Applied Botany, 71: 412–418.
Gerlach H.K., Stosser R. (1998): Sweet cherry cultivar identification using RAPD derived DNA fingerprints. Acta Horticulticulturae (ISHS), 468: 63–69.
Hormaza J.I (1999): Early selection in cherry combining RAPDs with embryo culture. Scientia Horticulturae, 79, 121-126
Huang H., Layne D.R., Kubisiak T.L. (2003): Molecular characterization of cultivated pawpaw (Asimina triloba) using RAPD markers. Journal of the American Society for Horticultural Science, 128: 85–93.
Iannelli D., Cottone C., Viscardi M., D'Apice L., Capparelli R., Boselli M. (1998): Identification of Genotypes of Lemon by Flow Cytometry and RAPD Markers. International Journal of Plant Sciences, 159, 864-
Kalia Rajwant K., Rai Manoj K., Kalia Sanjay, Singh Rohtas, Dhawan A. K. (2011): Microsatellite markers: an overview of the recent progress in plants. Euphytica, 177, 309-334
Karataş H., Ağaoğlu Y.S. (2010): RAPD analysis of selected local Turkish grape cultivars (Vitis vinifera). Genetics and Molecular Research, 9, 1980-1986
Kocsis M., Járomi L., Putnoky P., Kozma P., Borhidi A. (2005): Genetic diversity among twelve grape cultivars indigenous to the Carpathian Basin revealed by RAPD markers. Vitis, 44: 87–91.
Koller B., Lehmann A., McDermott J.M., Gessler C. (1993): Identification of apple cultivars using RAPD markers. Theoretical and Applied Genetics, 85-85, -
Luo S.L., He P.C., Zheng X.Q., Zhou P. (2001): Genetic diversity in wild grapes native to China based on RAPD analysis. Acta Botanica Sinica, 43: 158–163.
Mariniello L., Sommella M.G., Sorrentino A., Forlani M., Porta R. (2002): Identification of Prunus armeniaca cultivars by RAPD and SCAR markers. Biotechnology Letters, 24: 749–755.
Romero G., Adeva C., Battad Z. (2009): Genetic fingerprinting: advancing the frontiers of crop biology research. Philippine Science Letters, 2: 8–13.
Rowland L.J., Levi A. (1994): RAPD-based genetic linkage map of blueberry derived from a cross between diploid species (Vaccinium darrowi and V. elliottii). Theoretical and Applied Genetics, 87, -
Stockinger E. J., Mulinix C. A., Long C. M., Brettin T. S., lezzoni A. F. (1996): A Linkage Map of Sweet Cherry Based on RAPD Analysis of a Microspore-Derived Callus Culture Population. Journal of Heredity, 87, 214-218
Struss D., Ahmad R., Southwick S.M. (2003): Analysis of sweet cherry (Prunus avium L.) cultivars using SSR and AFLP markers. Journal of the American Society for Horticultural Science, 128: 904–909.
Testolin Raffaele, Marrazzo Teresa, Cipriani Guido, Quarta Roberta, Verde Ignazio, Dettori Maria Teresa, Pancaldi Marco, Sansavini Silviero (2000): Microsatellite DNA in peach (<i>Prunus persica</i> L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome, 43, 512-520
Ulanovsky S, Gogorcena Y, Martı́nez de Toda F, Ortiz J.M (2002): Use of molecular markers in detection of synonymies and homonymies in grapevines (Vitis vinifera L.). Scientia Horticulturae, 92, 241-254
Wuensch A., Hormaza J.I. (2002): Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers. Euphytica, 125: 59–67.
Yu M.L., Wang W.Y., Ma R.J., Shen Z.J., Fang J.G. (2012): Methodology An improved strategy based on RAPD markers efficiently identified 95 peach cultivars. Genetics and Molecular Research, 11, 1158-1168
download PDF

© 2020 Czech Academy of Agricultural Sciences