The influence of fungi of the Trichoderma genus on the flowering of Freesia refracta Klatt ‘Argentea’ in winter

https://doi.org/10.17221/35/2019-HORTSCICitation:

Janowska B., Andrzejak R., Kosiada T. (2020): The influence of fungi of the Trichoderma genus on the flowering of Freesia refracta Klatt ‘Argentea’ in winter. Hort. Sci. (Prague), 47: 203–210.

download PDF

The flowering and quality of Freesia refracta Klatt ‘Argentea’ were assessed after the application of fungi of the Trichoderma genus and assimilation lighting. The assimilation lighting accelerated the flowering of the Freesia refracta ‘Argentea’ plants by 3–4 weeks. The fungi of the Trichoderma genus accelerated the flowering of the Freesia refracta ‘Argentea’ plants with light deficit by about one week. The assimilation lighting resulted in the development of shorter main inflorescence shoots regardless of the fact whether the plants had been treated with the fungi of the Trichoderma genus or not. The assimilation lighting and the fungi of the Trichoderma genus stimulated the development of lateral inflorescence shoots in the ‘Argentea’ cultivar. The fungi of the Trichoderma genus stimulated the development of flowers in the ‘Argentea’ cultivar. This effect was particularly noticeable when the plants were exposed to the assimilation lighting. The assimilation lighting stimulated the uptake of potassium in the ‘Argentea’ cultivar. The fungi of the Trichoderma genus stimulated the uptake of phosphorus and calcium in the plants underexposed to light. They also stimulated the uptake of potassium in the plants exposed to the assimilation lighting. The assimilation lighting stimulated the uptake of microelements. The fungi of the Trichoderma genus stimulated the uptake of iron, manganese and zinc both in the plants exposed to the assimilation lighting and those underexposed to light. The assimilation lighting combined with the treatment with the fungi of the Trichoderma genus stimulated the uptake of copper.

References:
Alpa Y., Kuldeep Y., Ashok A. (2015): Impact of arbuscular mycorrhizal fungi with Trichoderma viride and Pseudomonas fluorescens on growth, yield and oil content in Helianthus annuus L. Journal of Essential Oil Bearing Plants, 18: 444–454.  https://doi.org/10.1080/0972060X.2014.971066
 
Altomare C., Norvell W.A., Björkmann T., Harman G.E. (1999): Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology, 65: 2926–2933. https://doi.org/10.1128/AEM.65.7.2926-2933.1999
 
Benitez T., Rincón A.M., Limón M.C., Codón A.C. (2004): Biocontrol mechanism of Trichoderma strains. International Microbiology, 7:249–260.
 
Brotman Y., Landau U., Cuadros-Inostroza A., Takayuki T., Fernie A.R., Chet H., Viterbo A., Willmitzer l. (2013): PLOS Pathogen, 9: 101371.  https://doi.org/10.1371/annotation/8b818c15-3fe0-4e56-9be2-e44fd1ed3fae
 
Darras A.I, Vlachodimitropoulou A., Dimitriadis C. (2019): Regulation of corm sprouting, growth and flowering of pot Freesia hybrida L. plants by cold and UV-C irradiation forcing. Scientia Horticulturae, 252: 110–112.  https://doi.org/10.1016/j.scienta.2019.03.045
 
Das M., Banerjee R., Bal S. (2008): Multivariable parameter optimization for the endoglucanase production by Trichoderma reesei Rut C30 from Ocimum gratissimum seed. Brazilian Archives of Biology and Technology, 51: 35–41. https://doi.org/10.1590/S1516-89132008000100005
 
Elad Y. (2000): Trichoderma harzianum T39 preparation for biocontrol of plant disease control of Botrytis cinerea, Sclerotinia sclerotiorum and Cladosporium fulvum. Biocontrol Science and Technology,10: 499–507. https://doi.org/10.1080/09583150050115089
 
Ghazanfar M., Raza M., Raza W., Qamar M. (2018): Trichoderma as potential biocontrol agent, its exploitation in agriculture: A review. Plant Protection, 2: 109–135.
 
Gilbertson-Ferriss T.L., Wilkins H.F. (1978): Flower production of Freesia hybrida seedlings under night interruption lighting and short day influence. The Journal of the American Society for Horticultural Science, 103: 587–591.
 
Heuvelink, E., Bakker, M.J., Hogendonk, L., Janse, J., Kaarsemaker R., Maaswinkel R. (2006): Horticultural lighting in the Netherlands: new developments. Acta Horticulturae (ISHS), 711: 25–34. https://doi.org/10.17660/ActaHortic.2006.711.1
 
Kamińska W., Kardasz T., Strahl A., Bałucka T., Walczak K., Filipek P. (1972): Metody analiz w stacjach chemiczno-rolniczych. Część II. Analiza roślin. [The Methods of Analysis in Chemical-agricultural Station. Part II. Analysis of Plants.] Puławy, IUNG.
 
Kawata J. (1973): Year-round production of Freesia in Japan. Japan Agricultural Research Quarterly, 7: 257–262.
 
Khan M.K., Sajid M., Rab A., Jan I., Zada H., Zamin M., Haq I, Zaman A., Shah S.T. ur Rehman A. 2012. Influence of nitrogen and phosphorus on flower and corm production of Freesia. African Journal of Biotechnology, 11: 11936–11942.  https://doi.org/10.5897/AJB12.047
 
Khosa S.S., Younis A., Rayit A., Yasmeen S., Riaz A. (2011): Effect of foliar application of macro and micro nutrients on growth and flowering of Gerbera jamesonii. Amercan-Eurasian Journal of Agricultural and Environmental Sciences, 11: 736–757.
 
Klamkowski K., Treder W., Treder J., Puternicki A., Lisak E. (2012): Wpływ doświetlania lampami sodowymi i LED na aktywność fotosyntetyczną oraz wzrost roślin pomidora /Influence of supplementary lighting with high pressure sodium and led lamps on growth and selected physiological parameters of tomato transplants/. Prace Instytutu Elektrotechniki, 256: 75–86.
 
Kosicka D., Wolna-Maruwka A., Trzeciak M. (2014): Aspekty stosowania Trichoderma sp. w ochronie roślin i rozkładzie materii organicznej. [Aspects of the use of Trichoderma sp. in crop protection and distribution of organic matter]. Kosmos. Problemy Nauk Biologicznych, 63: 635–642.
 
Kujawski P. (2005): Pobieranie składników pokarmowych zależy od warunków klimatycznych. [The uptake of nutrients depends on the climatic conditions.] Hasło Ogrodnicze, 3: 108–112.
 
Lahijie M.F. (2012): Application of micronutrients FeSO4 and ZnSO4 on the growth and development of Gladiolus variety ‘Oscar’. International Journal of Agriculture and Crop Sciences, 4: 718–720.
 
Lee J-J., Hwang J-H. (2014): Effect of day-length extension treatment using LED on growth and flowering of Freesia hybrida ‘Yvonne’. Korean Society of Horticultural Science, 32: 794–802.
 
Mancini V., Romanazzi G. (2013): Seed treatments to control seedborne fungal pathogens of vegetable crops. Pest Management Science, 70: 860–868.  https://doi.org/10.1002/ps.3693
 
Marcelis, L.F.M., Maas, F.M., E Heuvelink E. (2002): The latest developments in the lighting technologies in Dutch horticulture. Acta Horticulturae (ISHS), 580: 35–42. https://doi.org/10.17660/ActaHortic.2002.580.3
 
Mastouri F., Bjorkman T., Harman G.E. (2010): Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physological stresses in germination seeds and seedlings. Phytopathology, 100: 1213–1221. https://doi.org/10.1094/PHYTO-03-10-0091
 
Startek L., Żurawik P., Salachna P. (2005): Technologia uprawy frezji. [Freesia growing technology]. Biuletyn Stowarzyszenia producentów Ozdobnych Roślin Cebulowych, 17: 60–66.
 
Whipps J.M. (2001): Microbial interaction and biocontrol in the rhizosphere. Journal of Experimental Botany, 52: 487–511. https://doi.org/10.1093/jxb/52.suppl_1.487
 
Yedidia I., Srivastava A.K., Kupalnik Y., Chet I. (2001): Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, 235: 235–242. https://doi.org/10.1023/A:1011990013955
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti