The effect of rootstocks on the growth, yield and fruit quality of hybrid grape varieties in cold climate condition

https://doi.org/10.17221/58/2021-HORTSCICitation:

Kowalczyk B., Bieniasz M., Błaszczyk J., Banach P. (2022): The effect of rootstocks on the growth, yield and fruit quality of hybrid grape varieties in cold climate conditions. Hort. Sci. (Prague), 49: 78–88.

download PDF

Viniculture in colder countries requires the use of rootstocks adapted to the climatic and soil conditions, which influence the essential characteristics of the vine yield in terms of the physiological and morphological features. The current study was carried out in 2015–2018 in southern Poland to examine the impact of the ‘5BB’, ‘125AA’, ‘101-14M’, ‘SO4’ and ‘Börner’ rootstocks on the growth, yield and fruit quality of three grape varieties: ‘Seyval Blanc’, ‘Johanniter’ and ‘Solaris’. The following biometric parameters were compared: the increment in the trunk cross-sectional area, number of inflorescences on the vine, total yield, mean weight of a cluster and chemical parameters, such as the total soluble solid (TSS) content and grape titratable acidity (TA). The cluster weight of the individual varieties was also assessed in eight categories by weight (0–700 g). The results showed that ‘Solaris‘ and ‘Johanniter’ grafted onto ‘Börner’ and ‘Seyval Blanc’ onto ‘5BB’ had significantly increased trunk diameters. For the ‘Solaris‘ cultivar, the ‘Börner’ rootstock increased the TSS volume by 8.2%. In the ‘Seyval Blanc’ cultivar, ‘125AA’ and ‘Börner’ reduced the TSS content and increased the content of TA in the berries. In the ‘Johanniter’ cultivar, the ‘Börner’ rootstock led to an increase in the TSS content with a concomitant increase in the TA.

References:
Almeida G.K., Fioravanço J.C., Marodin G.A.B. (2020): Vegetative growth and productive performance of “Abate Fetel” and “Rocha” pear trees on quince rootstocks. Pesquisa Agropecuária Brasileira: 55. https://doi.org/10.1590/s1678-3921.pab2020.v55.01306
 
Bogicevic M., Maras V., Mugoša M., Kodžulović V., Raičević J., Šućur S., Failla O. (2015): The effects of early leaf removal and cluster thinning treatments on berry growth and grape composition in cultivars Vranac and Cabernet Sauvignon. Chemical and Biological Technologies in Agriculture, 2: 1–8. https://doi.org/10.1186/s40538-015-0037-1
 
Bou Nader K., Stoll M., Rauhut D., Patz C.D., Jung R., Loehnertz O., Schultz H.R., Hilbert G., Renaud C., Roby J.P., (2019): Impact of grapevine age on water status and productivity of Vitis vinifera L. cv. ‘Riesling’. European Journal of Agronomy, 104: 1–12. https://doi.org/10.1016/j.eja.2018.12.009
 
Bussi C., Huguet J.G., Besset J., Girard T. (1995): Rootstock effects on the growth and fruit yield of peach. European Journal of Agronomy, 4: 387–393. https://doi.org/10.1016/S1161-0301(14)80040-3
 
Censi P., Saiano F., Pisciotta A., Tuzzolino N. (2014): Geochemical behaviour of rare earths in Vitis vinifera grafted onto different rootstocks and growing on several soils. Science of the Total Environment, 473–474: 597–608. https://doi.org/10.1016/j.scitotenv.2013.12.073
 
Cioch M., Tuszyński T. (2014): Biologiczne metody odkwaszania win gronowych. Engineering Sciences and Technologies, 1: 10–23. https://doi.org/10.15611/nit.2014.1.01
 
Clingeleffer P.R., Emmanuelli D.R. (2006): An assessment of rootstocks for Sunmuscat (Vitis vinifera L.): a new drying variety. Australian Journal of Grape and Wine Research, 12: 135–140.  https://doi.org/10.1111/j.1755-0238.2006.tb00053.x
 
Duchêne É. (2016): How can grapevine genetics contribute to the adaptation to climate change. OENO One, 50: 113–124. https://doi.org/10.20870/oeno-one.2016.50.3.98
 
Dziedzic E., Bieniasz M., Kowalczyk B. (2019): Morphological and physiological features of sweet cherry floral organ affecting the potential fruit crop in relation to the rootstock. Scientia Horticulturae, 251: 127–135. https://doi.org/10.1016/j.scienta.2019.03.013
 
Ferlito F., Distefano G., Gentile A., Allegra M., Lakso A.N., Nicolosi E. (2020): Scion–rootstock interactions influence the growth and behaviour of the grapevine root system in a heavy clay soil. Australian Journal of Grape and Wine Research, 26: 68–78.  https://doi.org/10.1111/ajgw.12415
 
Gatti M., Bernizzoni F., Civardi S., Poni S. (2012): Effects of cluster thinning and preflowering leaf removal on growth and grape composition in cv. Sangiovese. American Journal of Enology and Viticulture, 63: 325–332. https://doi.org/10.5344/ajev.2012.11118
 
Gautier A.T., Chambaud C., Brocard L., Ollat N., Gambetta G.A., Delrot S., Cookson S.J. (2019): Merging genotypes: graft union formation and scion–rootstock interactions. Journal of Experimental Botany, 70: 747–755.  https://doi.org/10.1093/jxb/ery422
 
Greyling I. (2019): Extraction and bioconversion of aroma impact compounds from Sauvignon Blanc grapes to wine matrices during white wine production. [MSc. Thesis.] Stellenbosch, Stellenbosch University, 1–119.
 
Gu S. (2001): Effect of Rootstocks on Grapevines. Vitis. Kentucky State University: 1–19.
 
Izajasz-Parchańska M., Cioch M., Tuszyński T. (2014): Monitoring parametrów dojrzałości technologicznej winogron na terenie małopolskiej winnicy Srebrna Góra, w sezonie wegetacyjnym 2012. Acta Agrophysica, 21: 263–278.
 
Jin Z-X., Sun T-Y., Sun H., Yue Q-Y., Yao Y-X. (2016): Modifications of ‘Summer Black’ grape berry quality as affected by the different rootstocks. Scientia Horticulturae, 210: 130–137. https://doi.org/10.1016/j.scienta.2016.07.023
 
Ju Y-L., Liu M., Zhao H., Meng J-F., Fang Y-L. (2016): Effects of exogenous abscisic acid and methyl jasmonate on anthocyanin composition, fatty acids, and volatile coupounds of Cabernet Sauvignon (Vitis vinifera L.) grape berries. Molecules, 21: 1354.  https://doi.org/10.3390/molecules21101354
 
Julius Kühn-Institut. Vitis International Variety Catalogue - ‘Solaris‘, ‘Johanniter’. Available at http://www.vivc.de
 
Keller M., Kummer M., Vasconcelos M.C. (2001): Reproductive growth of grapevines in response to nitrogensupply and rootstock. Australian Journal of Grape and Wine Research, 7: 12–18.  https://doi.org/10.1111/j.1755-0238.2001.tb00188.x
 
Keller M. (2010): Managing grapevines to optimise fruit development in a challenging environment: A climate change primer for viticulturists. Australian Journal of Grape and Wine Research,16: 56–69.  https://doi.org/10.1111/j.1755-0238.2009.00077.x
 
Kidman C.M., Mantilla S.O., Dry P.R., Mccarthy M.G., Collins C. (2014): Effect of water stress on the reproductive performance of Shiraz (Vitis vinifera L.) grafted to rootstocks. American Journal of Enology and Viticulture, 65: 96–108.  https://doi.org/10.5344/ajev.2013.13069
 
Lampíř L., Žaloudek J. (2018): Influence of summer management practices and date of harvesting on organic acids concentration and sugar concentration in grapes of Vitis vinifera L., cv. ‘Riesling’. Horticultural Science (Prague), 45: 213–218. https://doi.org/10.17221/213/2017-HORTSCI
 
Li M., Guo Z., Jia N., Yuan J., Han B., Yin Y., Sun Y., Liu C., Zhao S. (2019): Evaluation of eight rootstocks on the growth and berry quality of ‘Marselan’ grapevines. Scientia Horticulturae, 248: 58–61.  https://doi.org/10.1016/j.scienta.2018.12.050
 
Liu J., Toldam-Andersen T.B., Petersen M.A., Zhang S., Arneborg N., Bredie W.L.P. (2015): Instrumental and sensory characterisation of ‘Solaris‘ white wines in Denmark. Food Chemistry, 166: 133–142. https://doi.org/10.1016/j.foodchem.2014.05.148
 
Long L.E., Iezzoni A., Seavert C., Auvil T., Kaiser C., Brewer L.J. (2019): New cherry rootstock and cultivar interactions directly affect orchard profitability. Acta Horticulturae (ISHS), 1235: 197–206.  https://doi.org/10.17660/ActaHortic.2019.1235.26
 
Lovisolo C., Lavoie-Lamoureux A., Tramontini S., Ferrandino A. (2016): Grapevine adaptations to water stress: new perspectives about soil/plant interactions. Theoretical and Experimental Plant Physiology, 28: 53–66.  https://doi.org/10.1007/s40626-016-0057-7
 
Mijowska K., Ochmian I., Oszmiański J. (2017): Rootstock effects on polyphenol content in grapes of ‘Regent’ cultivated under cool climate condition. Journal of Applied Botany and Food Quality, 90: 159–164.
 
Mpelasoka B.S., Schachtman D.P., Treeby M.T., Thomas MR. (2003): A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Australian Journal of Grape and Wine Research, 9: 154–168.  https://doi.org/10.1111/j.1755-0238.2003.tb00265.x
 
Mudge K., Jcinick J., Scofield S. (2009): A History of Grafting. Chapter 6. In: Janick J. (ed.): Horticultural Review, Vol. 35. John Wiley and Sons: 437–493.
 
Myśliwiec R., Mazurek J., Bosak W., Wawro E. (2018): Winorośl i wino, wiedza i praktyka. Part 1. In: Fund na Rzecz Rozw i Promocji Winiarstwa Galicja Vitis. Jasło: 127–140.
 
Ollat N., Diakou-Verdin P., Carde J.P., Barrieu F., Gaudillère J.P., Moing A. (2002): Grape berry development : A review. Journal International des Sciences de la Vigne et du Vin, 36: 109–131.
 
Pulko B., Vršič S., Valdhuber J. (2012): Influence of various rootstocks on the yield and grape composition of Sauvignon Blanc. Czech Journal of Food Sciences, 30: 467–473. https://doi.org/10.17221/347/2011-CJFS
 
Reynolds A.G., Wardle D.A. (2001): Rootstocks impact vine performance and fruit composition of grapes in British Columbia. HortTechnology, 11: 419–427. https://doi.org/10.21273/HORTTECH.11.3.419
 
Riesterer-Loper J., Workmaster B.A., Atucha A. (2019): Impact of fruit zone sunlight exposure on ripening profiles of cold climate interspecific hybrid winegrapes. American Journal of Enology and Viticulture, 70: 286–296.  https://doi.org/10.5344/ajev.2019.18080
 
Romero P., Botía P., Navarro J.M. (2018): Selecting rootstocks to improve vine performance and vineyard sustainability in deficit irrigated Monastrell grapevines under semiarid conditions. Agricultural Water Management, 209: 73–93.  https://doi.org/10.1016/j.agwat.2018.07.012
 
Sabir A., Kilinc S., Sabir F. (2020): Qualitative and quantitative responses of early ripening table grape cultivars (Vitis vinifera L.) to pollination treatments under controlled growing condition. Erwerbs-Obstbau, 62: 75–80 https://doi.org/10.1007/s10341-020-00499-6
 
Samoticha J., Wojdyło A., Golis T. (2017): Phenolic composition, physicochemical properties and antioxidant activity of interspecific hybrids of grapes growing in Poland. Food Chemistry, 215: 263–273. https://doi.org/10.1016/j.foodchem.2016.07.147
 
Schrader J.A., Cochran D.R., Domoto P.A., Nonnecke G.R. (2020): Yield and berry composition of cold-climate grape cultivars and advanced selections in Iowa climate. Horttechnology, 30: 193–203.  https://doi.org/10.21273/HORTTECH04557-19
 
Shaffer R., Sampaio T.L., Pinkerton J., Vasconcelos M.C. (2004): Grapevine Rootstocks for Oregon Vineyards. Oregon State University Extension Publication, 12.
 
Shahab M., Roberto S.R., Ahmed S., Carlos Colombo R., Silvestre P., Koyama R., Teodoro De Souza R. (2020): Relationship between anthocyanins and skin color of table grapes treated with abscisic acid at different stages of berry ripening. Scientia Horticulturae, 259: 108859.  https://doi.org/10.1016/j.scienta.2019.108859
 
Slegers A., Angers P., Pedneault K. (2017): Volatile compounds from must and wines from five white grape varieties. Journal of Food Chemistry and Nanotechnology, 3: 8–18.  https://doi.org/10.17756/jfcn.2017-031
 
Somkuwar R.G., Bondage D.D., Surange M.S., Ramteke S.D., (2011): Rooting behaviour, polyphenol oxidase activity, and biochemical changes in grape rootstocks at diff erent growth stages. Turkish Journal of Agriculture and Forestry, 35: 281–287.
 
Stevens R.M., Pech J.M., Gibberd M.R., Walker R.R., Jones J.A., Taylor J., Nicholas P.R. (2008): Effect of reduced irrigation on growth, yield, ripening rates and water relations of Chardonnay vines grafted to five rootstocks. Australian Journal of Grape and Wine Research, 14: 177–190. https://doi.org/10.1111/j.1755-0238.2008.00018.x
 
Téthal J., Baroň M., Sotolář R., Ailer S., Sochor J. (2015): Effect of grapevine rootstocks on qualitative parameters of the Cerason variety. Czech Journal of Food Sciences, 33: 570–579.
 
Tworkoski T., Miller S. (2007): Rootstock effect on growth of apple scions with different growth habits. Scientia Horticulturae, 111: 335–343. https://doi.org/10.1016/j.scienta.2006.10.034
 
Vršič S., Pulko B., Kocsis L. (2015): Factors influencing grafting success and compatibility of grape rootstocks. Scientia Horticulturae, 181: 168–173. https://doi.org/10.1016/j.scienta.2014.10.058
 
Walker R., Clingeleffer P. (2009): Rootstock attributes and selection for Australian conditions. American Society for Enology and Viticulture (ASEV). Napa Valley, California, (June): 23–26.
 
Wang Y., Chen W.K., Gao X.T., He L., Yang X.H., He F., Duan C.Q., Wang J. (2019): Rootstock-mediated effects on cabernet sauvignon performance: vine growth, berry ripening, flavonoids, and aromatic profiles. International Journal of Molecular Sciences, 20: 401. https://doi.org/10.3390/ijms20020401
 
Wang Z.Y., Patterson K.J., Gould K.S., Lowe R.G. (1994): Rootstock effects on budburst and flowering in kiwifruit. Scientia Horticulturae, 57: 187–199. https://doi.org/10.1016/0304-4238(94)90140-6
 
Whiting J. (2004): Grapevine rootstocks. Viticulture. Tom 1 Resources. Edited by P.R. Dry and B.G. Coo, 167–188.
 
Wooldridge J., Louw P.J.E., Conradie W.J. (2010): Effects of rootstock on grapevine performance, petiole and must composition, and overall wine score of Vitis vinifera cv. Chardonnay and Pinot Noir. South African Journal of Enology and Viticulture, 31: 45–48.
 
Yair M. (2014): Concepts in wine technology. Wine Appreciation Guild: 16–19.
 
Zhang J., Hausmann L., Eibach R., Welter L.J., Töpfer R., Zyprian E.M. (2009): A framework map from grapevine V3125 (Vitis vinifera ‘‘Schiava gross’’ × ‘Riesling’) × rootstock cultivar ‘‘Börner’’ (Vitis riparia × Vitis cinerea) to localize genetic determinants of phylloxera root resistance. Theoretical and Applied Genetics, 119: 1039–1051. https://doi.org/10.1007/s00122-009-1107-1
 
Zhang L., Marguerit E., Rossdeutsch L., Ollat N., Gambetta G.A. (2016): The influence of grapevine rootstocks on scion growth and drought resistance. Theoretical and Experimental Plant Physiology, 28: 143–157.  https://doi.org/10.1007/s40626-016-0070-x
 
Zhang S., Petersen M., Liu J., Toldam-Andersen T. (2015): Influence of pre-fermentation treatments on wine volatile and sensory profile of the new disease tolerant cultivar ‘Solaris‘. Molecules, 20: 21609–21625. https://doi.org/10.3390/molecules201219791
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti