The effect of a magnetic field on the phenolic composition and virus sanitation of raspberry plants

Upadyshev M., Motyleva S., Kulikov I., Donetskih V., Mertvischeva M., Metlitskaya K., Petrova A. (2020): The effect of magnetic field on phenolic composition and virus sanitation of raspberry plants. Hort. Sci. (Prague), 48: 166–173.

download PDF

A magnetic pulse treatment led to an increase in the Raspberry bushy dwarf Idaeovirus-free microplants’ output and their phenolic composition change. The greatest output of the virus-free raspberries microplants (80–82%) was marked after complex treatment with pulsed and rotating magnetic fields with a time-changing frequency from 3.2 to 51 Hz, as well as with a pulsed magnetic field with a frequency from 1 to 10 Hz. The pulsed and rotating magnetic fields’ complex effect resulted in the gallic and salicylic acid content increase by 14 % and 71%, respectively, compared to the untreated variant. The chlorogenic, salicylic and gallic acids’ active synthesis was observed 72 hours after the magnetic treatment with a frequency from 3.2 to 51 Hz. There was a tendency for the amount of the phenolcarbonic acid to decrease 14 days after the magnetic treatment, except for the variant with the pulsed and rotating field treatment.

Anand A., Nagarajan S., Verma A., Joshi D., Pathak P., Bhardwaj J. (2012): Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian Journal of Biochemistry and Biophysics, 49: 63–70.
Baryshev M.G. (2002): Electromagnetic processing of materials of plant and animal origin. Krasnodar, Kuban State University Publishing.
Belyavskaya N.A. (2004): Biological effects due to weak magnetic field on plants. Advances in Space Research, 34: 1566–1574.
Bingy V.N. (2002): Magnetobiology: Experiments and Models. Moscow, MILTA.
Bingy V.N., Savin A.V. (2003): Effects of weak magnetic fields on biological systems: physical aspects. Physics-Uspekhi (Advances in PhysicalSciences), 46: 259–291.
Cakmak T., Cakmak Z.E., Dumlupinar R., Tekinay T. (2012): Analysis of apoplastic and symplastic antioxidant system in shallot leaves: impacts of weak static electric and magnetic field. Journal of Plant Physiology, 169: 1066–1073.
Clark M.F., Adams A.N. (1977): Characteristics of microplate method of enzyme-linked immunosorbent assay for detection of plant viruses. Journal of General Virology, 34: 475–483.
Donetskikh V.I., Upadyshev M.T., Selivanov V.G. (2018): An innovative device for exposing plants to a stationary, traveling and rotating pulsed magnetic field. Machinery and Equipment for Rural Areas, 7 (253): 32–37.
Donetskikh V.I., Upadyshev M.T., Petrova A.D., Metlitskaya K.V., Selivanov V.G. (2017): Application of AMIS-8 apparatus to combat viruses when preparing planting stock of fruit crops. Machinery and Equipment for Rural Areas, 1 (235): 16–23.
Esitken A., Turan M. (2004): Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria × ananassa cv. Camarosa). Acta Agriculturae Scandinavica, Section B – Soil and Plant Science, 54: 135–139.
Hara M., Furukawa J., Sato A., Mizoguchi T., Miura K. (2012): Abiotic stress and role of salicylic acid in plants. In: Ahmad P., Prasad M.N.V. (eds): Abiotic Stress Responses in Plants. New York, Dordrecht, Heidelberg, London, Springer: 235–251.
Lipiec J., Janas Р., Barabasz W., Pysz M., Pisulewski Р. (2005): Effects of oscillating magnetic field pulses on selected oat sprouts used for food purposes. Acta Agrophysica, 5: 357–365.
Maffei M.E. (2014): Magnetic field effects on plant growth, development and evolution. Plant Science, 5: 1–15.
Manzhelesova N., Bolynets N. (2015): Plant hormones and phenolic compounds in plants diseases control. Science and innovations: 62–65. Available at
Murashige T., Skoog F. (1962): A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473–497.
Nadirov N.K., Solodova E.V., Ashirov A.M., Chirkin A.P., Polykhova S.M. (2009): Complex influence of the low-frequency electromagnetic field on qualitative composition of corn. Available at htpps://
Novitskiy Y.I., Novitskaya G.V., Serdyukov Y.A. (2014): Lipid utilization in radish seedlings as affected with weak horizontal extremely low frequency magnetic field. Bioelectromagnetics, 35: 91–99.
Stange D.C., Rowland R.E., Rapley B.J., Podd J.V. (2002): ELF magnetic fields increase amino acid uptake into Vicia faba L. roots and alter ion movement across the plasma membrane. Bioelectromagnetics, 23: 347–354.
Shabrangi A., Majd A. (2009): Effect of magnetic fields on growth and antioxidant systems in agricultural plants. In: Progress in Electromagnetic Research Symposium. Beijing, China, 2: 1142–1147.
Trebbi G., Borghini F., Lazzarato L., Torrigiani P., Calzoni G.L., Betti L. (2007): Extremely low frequency weak magnetic fields enhance resistance of NN tobacco plants to Tobacco Mosaic Virus and elicit stress-related biochemical activities. Bioelectromagnetics, 28: 214–223.
Upadyshev M.T., Donetskih V.I. (2008): New method of sanitizing berry and fruit crops from viruses by the magnetotherapy method. Russian Academy of Agricultural Sciences, 34: 223–226.
Upadyshev M.T., Motyleva S.M., Mertvischeva M.E., Donetskih V.I. (2017): About biochemical mechanism of magnetic treatment effect on raspberry plants sanitation from viruses processes. In: The Role of Physiology and Biochemistry in Vegetable, Fruit and Officinal Plants Introduction and Selection. Moscow: 315–317. Available at htpps://
Wang Q., Cuellar W.J., Raiamäki M. L., Hirata Y., Valkonen J.P.T. (2008): Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Molecular Plant Pathology, 9: 237–250.
Weaver J.C., Chizmadzhev Y. (1996): Theory of electroporation: a review. Bioelectrochemistry and Bioenergetics, 41: 135–160.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti