The effect of a magnetic field on the phenolic composition and virus sanitation of raspberry plants

https://doi.org/10.17221/60/2020-HORTSCICitation:

Upadyshev M., Motyleva S., Kulikov I., Donetskih V., Mertvischeva M., Metlitskaya K., Petrova A. (2020): The effect of magnetic field on phenolic composition and virus sanitation of raspberry plants. Hort. Sci. (Prague), 48: 166–173.

download PDF

A magnetic pulse treatment led to an increase in the Raspberry bushy dwarf Idaeovirus-free microplants’ output and their phenolic composition change. The greatest output of the virus-free raspberries microplants (80–82%) was marked after complex treatment with pulsed and rotating magnetic fields with a time-changing frequency from 3.2 to 51 Hz, as well as with a pulsed magnetic field with a frequency from 1 to 10 Hz. The pulsed and rotating magnetic fields’ complex effect resulted in the gallic and salicylic acid content increase by 14 % and 71%, respectively, compared to the untreated variant. The chlorogenic, salicylic and gallic acids’ active synthesis was observed 72 hours after the magnetic treatment with a frequency from 3.2 to 51 Hz. There was a tendency for the amount of the phenolcarbonic acid to decrease 14 days after the magnetic treatment, except for the variant with the pulsed and rotating field treatment.

References:
Anand A., Nagarajan S., Verma A., Joshi D., Pathak P., Bhardwaj J. (2012): Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian Journal of Biochemistry and Biophysics, 49: 63–70.
 
Baryshev M.G. (2002): Electromagnetic processing of materials of plant and animal origin. Krasnodar, Kuban State University Publishing.
 
Belyavskaya N.A. (2004): Biological effects due to weak magnetic field on plants. Advances in Space Research, 34: 1566–1574. https://doi.org/10.1016/j.asr.2004.01.021
 
Bingy V.N. (2002): Magnetobiology: Experiments and Models. Moscow, MILTA.
 
Bingy V.N., Savin A.V. (2003): Effects of weak magnetic fields on biological systems: physical aspects. Physics-Uspekhi (Advances in PhysicalSciences), 46: 259–291. https://doi.org/10.1070/PU2003v046n03ABEH001283
 
Cakmak T., Cakmak Z.E., Dumlupinar R., Tekinay T. (2012): Analysis of apoplastic and symplastic antioxidant system in shallot leaves: impacts of weak static electric and magnetic field. Journal of Plant Physiology, 169: 1066–1073. https://doi.org/10.1016/j.jplph.2012.03.011
 
Clark M.F., Adams A.N. (1977): Characteristics of microplate method of enzyme-linked immunosorbent assay for detection of plant viruses. Journal of General Virology, 34: 475–483. https://doi.org/10.1099/0022-1317-34-3-475
 
Donetskikh V.I., Upadyshev M.T., Selivanov V.G. (2018): An innovative device for exposing plants to a stationary, traveling and rotating pulsed magnetic field. Machinery and Equipment for Rural Areas, 7 (253): 32–37.
 
Donetskikh V.I., Upadyshev M.T., Petrova A.D., Metlitskaya K.V., Selivanov V.G. (2017): Application of AMIS-8 apparatus to combat viruses when preparing planting stock of fruit crops. Machinery and Equipment for Rural Areas, 1 (235): 16–23.
 
Esitken A., Turan M. (2004): Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria × ananassa cv. Camarosa). Acta Agriculturae Scandinavica, Section B – Soil and Plant Science, 54: 135–139.
 
Hara M., Furukawa J., Sato A., Mizoguchi T., Miura K. (2012): Abiotic stress and role of salicylic acid in plants. In: Ahmad P., Prasad M.N.V. (eds): Abiotic Stress Responses in Plants. New York, Dordrecht, Heidelberg, London, Springer: 235–251.
 
Lipiec J., Janas Р., Barabasz W., Pysz M., Pisulewski Р. (2005): Effects of oscillating magnetic field pulses on selected oat sprouts used for food purposes. Acta Agrophysica, 5: 357–365.
 
Maffei M.E. (2014): Magnetic field effects on plant growth, development and evolution. Plant Science, 5: 1–15.
 
Manzhelesova N., Bolynets N. (2015): Plant hormones and phenolic compounds in plants diseases control. Science and innovations: 62–65. Available at https://innosfera.by/files/2015/3.pdf
 
Murashige T., Skoog F. (1962): A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
 
Nadirov N.K., Solodova E.V., Ashirov A.M., Chirkin A.P., Polykhova S.M. (2009): Complex influence of the low-frequency electromagnetic field on qualitative composition of corn. Available at htpps://www.biophys.ru/archive/congress2009/abs-p153.pdf
 
Novitskiy Y.I., Novitskaya G.V., Serdyukov Y.A. (2014): Lipid utilization in radish seedlings as affected with weak horizontal extremely low frequency magnetic field. Bioelectromagnetics, 35: 91–99. https://doi.org/10.1002/bem.21818
 
Stange D.C., Rowland R.E., Rapley B.J., Podd J.V. (2002): ELF magnetic fields increase amino acid uptake into Vicia faba L. roots and alter ion movement across the plasma membrane. Bioelectromagnetics, 23: 347–354. https://doi.org/10.1002/bem.10026
 
Shabrangi A., Majd A. (2009): Effect of magnetic fields on growth and antioxidant systems in agricultural plants. In: Progress in Electromagnetic Research Symposium. Beijing, China, 2: 1142–1147.
 
Trebbi G., Borghini F., Lazzarato L., Torrigiani P., Calzoni G.L., Betti L. (2007): Extremely low frequency weak magnetic fields enhance resistance of NN tobacco plants to Tobacco Mosaic Virus and elicit stress-related biochemical activities. Bioelectromagnetics, 28: 214–223. https://doi.org/10.1002/bem.20296
 
Upadyshev M.T., Donetskih V.I. (2008): New method of sanitizing berry and fruit crops from viruses by the magnetotherapy method. Russian Academy of Agricultural Sciences, 34: 223–226. https://doi.org/10.3103/S1068367408040046
 
Upadyshev M.T., Motyleva S.M., Mertvischeva M.E., Donetskih V.I. (2017): About biochemical mechanism of magnetic treatment effect on raspberry plants sanitation from viruses processes. In: The Role of Physiology and Biochemistry in Vegetable, Fruit and Officinal Plants Introduction and Selection. Moscow: 315–317. Available at htpps://www.elibrary.ru/item.asp?id=29233478
 
Wang Q., Cuellar W.J., Raiamäki M. L., Hirata Y., Valkonen J.P.T. (2008): Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Molecular Plant Pathology, 9: 237–250. https://doi.org/10.1111/j.1364-3703.2007.00456.x
 
Weaver J.C., Chizmadzhev Y. (1996): Theory of electroporation: a review. Bioelectrochemistry and Bioenergetics, 41: 135–160. https://doi.org/10.1016/S0302-4598(96)05062-3
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti