The protective effect of cold acclimation on the low temperature stress of the lotus (Nelumbo nucifera)

https://doi.org/10.17221/62/2020-HORTSCICitation:

Li X., Zhang D., Xu J., Jiang J., Jiang H.W. (2022): The protective effect of cold acclimation on the low temperature stress of the lotus (Nelumbo nucifera). Hort. Sci. (Prague), 49: 29–37.

supplementary materialdownload PDF

This study compared the protective effect of cold acclimation on the cold tolerance in the lotus (Nelumbo nucifera). The cold acclimation increased the sprouting rate and leaf expansion rate of the lotus by about 36% at 0 °C, and the cold acclimation could enhance the levels of the stress related osmolytes including higher proline, soluble protein, and soluble sugar contents. The electrolyte leakage and lipid peroxidation level of the control samples increased significantly, but these indices did not change significantly in the cold acclimation group during low temperature stress. Furthermore, the cold acclimated rhizomes had higher antioxidant enzyme activities and a more stable ROS homeostasis response to the low temperature stress. Some stress-related genes were significantly up-regulated after the cold acclimation, especially the antioxidase related genes (CAT1, GPX, APX and MSD) were up-regulated nearly five times higher than that of the control group at the 0 °C condition. Additionally, the ICE1-CBF-COR pathway was involved in the lotus cold acclimation process. These results suggested that cold acclimation can obviously improve the stress tolerance of the lotus by the stable ROS homeostasis, enhance the antioxidant enzyme activity, regulate the stress-related gene expression and alleviate the stress damage.

References:
Atici O., Nalbantoglu B. (2003): Antifreeze proteins in higher plants. Phytochemistry, 64: 1187–1196.  https://doi.org/10.1016/S0031-9422(03)00420-5
 
Couée I., Sulmon C., Gouesbet G., El Amrani A. (2006): Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. Journal of Experimental Botany, 57: 449–459. https://doi.org/10.1093/jxb/erj027
 
Foyer C.H., Noctor G. (2005): Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell,  https://doi.org/10.1105/tpc.105.033589
 
17: 1866–1875.
 
Foyer C.H., Noctor G. (2009): Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications. Antioxidants & Redox Signaling, 11: 861–905.
 
Gao F., Zhou Y.J., Zhu W.P., Li X.F., Fan L.M., Zhang G.F. (2009): Proteomic analys is of cold stress-responsive proteins in Thellungiella rosette leaves. Planta, 230: 1033–1046. https://doi.org/10.1007/s00425-009-1003-6
 
Garbero M., Pedranzani H., Zirulnik F., Molina A., Pérez-Chaca M.V., Vigliocco A., Abdala G. (2011): Short-term cold stress in two cultivars of Digitaria eriantha: Effects on stress-related hormones and antioxidant defense system. Acta Physiologiae Plantarum, 33: 497–507. https://doi.org/10.1007/s11738-010-0573-z
 
Guo Z., Ou W., Lu S., Zhong Q. (2006): Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry, 44: 828–836. https://doi.org/10.1016/j.plaphy.2006.10.024
 
Guy C.L. (1990): Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 41: 187–223.  https://doi.org/10.1146/annurev.pp.41.060190.001155
 
Hossain Z., López-Climent M.F., Arbona V., Pérez-Clemente R.M., Gómez-Cadenas A. (2009): Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage. Plant Physiology, 166: 1391–1404. https://doi.org/10.1016/j.jplph.2009.02.012
 
Hsieh T.H., Lee J.T., Yang P.T., Chiu L.H., Charng Y.Y., Wang Y.C., Chan M.T. (2004): Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiology, 135: 1145–1155.
 
Jain M., Mathur G., Konl S., Sarin N.B. (2001): Ameliorative effects of proline on salt stress lipid peroxidation in cell lines of groundnut (Arachis hypogea L.). Plant Cell Reports, 20: 463–468. https://doi.org/10.1007/s002990100353
 
Kaur G., Kumar S., Thakur P., Malik J.A., Bhandhari K., Sharma K.D., Nayyar H. (2011): Involvement of proline in response of chickpea (Cicer arietinum L.) to chilling stress at reproductive stage. Scientia Horticulturae,  https://doi.org/10.1016/j.scienta.2011.01.037
 
128: 174–181.
 
Khedr A.H.A., Abbas M.A., Wahid A.A.A., Quick W.P., Abogadallah G.M. (2003): Proline induces the expression of salt-stress responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. Journal of Experimental Botany, 54: 2553–2562. https://doi.org/10.1093/jxb/erg277
 
Li H.S. (2000): Experimental technique of plant physiology and biochemistry. In: Xue Y. (ed.): Experimental Principles and Technique of Plant Physiology and Biochemistry. Beijing, Higher Education Press: 195–197.
 
Lu S., Wang X., Guo Z. (2013): Differential responses to chilling in Stylosanthes guianensis (Aublet) Sw. and its mutants. Agronomy Journal, 105: 377–382.  https://doi.org/10.2134/agronj2012.0333
 
Mantyla E., Lang V., Palva E.T. (1995): Role of abscisic acid in droughtinduced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant Physiology, 107: 141–148. https://doi.org/10.1104/pp.107.1.141
 
Matsumura T., Tabayashi N., Kamagata Y., Souma C., Saruyama H. (2002): Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiologia Plantarum, 116: 317–327. https://doi.org/10.1034/j.1399-3054.2002.1160306.x
 
Matteucci M., D’Angeli S., Errico S., Lamanna R., Perrotta G., Altamura M.M. (2011): Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L. genotypes with different cold hardiness. Journal of Experimental Botany, 62: 3403–3420. https://doi.org/10.1093/jxb/err013
 
Miura K., Ohta M., Nakazawa M., Ono M., Hasegawa P.M. (2011): ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. Plant Journal, 67: 269–279. https://doi.org/10.1111/j.1365-313X.2011.04589.x
 
Ruelland E., Vaultier M.N., Zachowski A., Hurry V., Kader J.C., Delseny M. (2009): Cold signaling and cold acclimation in plants. Advances in Botanical Research, 49: 35–150.
 
Sebnem K., Sebnem E., Zehra P. (2004): Antioxidative enzyme activity, lipid peroxidation, and proline accumulation in the callus tissues of salt and drought tolerant and sensitive pumpkin genotypes under chilling stress. Horticulture Environment and Biotechnology, 54: 319–325.
 
Sinha S., Mukherjee P.K., Mukherjee K., Pal M., Mandal S.C., Saha B. (2000): Evaluation of antipyretic potential of Nelumbo nucifera stalk extract. Phytotherapy Research, 14: 272–274. https://doi.org/10.1002/1099-1573(200006)14:4<272::AID-PTR556>3.0.CO;2-H
 
Suzuki N., Koussevitzky S., Mittler R., Miller G. (2011): ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environment, 35: 259–270.  https://doi.org/10.1111/j.1365-3040.2011.02336.x
 
Tang H., Zhang D., Yuan S., Zhu F., Xu F., Fu F., Wang S., Lin H. (2014): Plastid signals induce ALTERNATIVE OXIDASE expression to enhance the cold stress tolerance in Arabidopsis thaliana. Plant Growth Regulation, 74: 275–283.  https://doi.org/10.1007/s10725-014-9918-8
 
Theocharis A., Clément C., Barka E.A. (2012): Physiological and molecular changes in plants grown at low temperatures. Planta, 235: 1091–1105. https://doi.org/10.1007/s00425-012-1641-y
 
Walker D.J., Romero P., Correal E. (2010): Cold tolerance, water relations and accumulation of osmolytes in Bituminaria bituminosa. Biologia Plantarum, 54: 293–298. https://doi.org/10.1007/s10535-010-0051-x
 
Wang Q.C., Zhang X.Y. (2005): The biological and ecological characteristics of lotus. In: Chen Y.J. (ed.): Colored Illustration of Lotus Cultivars in China. Beijing, Forestry Press: 30–31. (in Chinese)
 
Xiao H., Tattersall E.A., Siddiqua M.K., Cramer G.R., Nassuth A. (2008): CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant Cell Environment, 31: 1–10.
 
Xiong L., Schumaker K.S., Zhu J.K. (2002): Cell signalling for cold, drought, and salt stresses. Plant Cell, 14: 165–183. https://doi.org/10.1105/tpc.000596
 
Yang Q., Gao J., He W., Dou T., Ding L., Wu J., Li C., Peng X., Zhang S., Yi G. (2015): Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genomics, 16: 446. https://doi.org/10.1186/s12864-015-1551-z
 
Yang Z., Sheng J., Lv K., Ren L., Zhang D. (2019): Y2SK2 and SK3 type dehydrins from Agapanthus praecox can improve plant stress tolerance and act as multifunctional protectants. Plant Science, 284: 143–160. https://doi.org/10.1016/j.plantsci.2019.03.012
 
Zhang D., Ren L., Yue J.H., Wang L., Zhuo L.H., Shen X.H. (2013): A comprehensive analysis of flowering transition in Agapanthus praecox ssp. orientalis (Leighton) Leighton by using transcriptomic and proteomic techniques. Journal of Proteomics, 80: 1–25. https://doi.org/10.1016/j.jprot.2012.12.028
 
supplementary materialdownload PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti