The protective effect of cold acclimation on the low temperature stress of the lotus (Nelumbo nucifera)
Atici O., Nalbantoglu B. (2003): Antifreeze proteins in higher plants. Phytochemistry, 64: 1187–1196.
https://doi.org/10.1016/S0031-9422(03)00420-5
Couée I., Sulmon C., Gouesbet G., El Amrani A. (2006): Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. Journal of Experimental Botany, 57: 449–459.
https://doi.org/10.1093/jxb/erj027
Foyer C.H., Noctor G. (2005): Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell,
https://doi.org/10.1105/tpc.105.033589
17: 1866–1875.
Foyer C.H., Noctor G. (2009): Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications. Antioxidants & Redox Signaling, 11: 861–905.
Gao F., Zhou Y.J., Zhu W.P., Li X.F., Fan L.M., Zhang G.F. (2009): Proteomic analys is of cold stress-responsive proteins in Thellungiella rosette leaves. Planta, 230: 1033–1046.
https://doi.org/10.1007/s00425-009-1003-6
Garbero M., Pedranzani H., Zirulnik F., Molina A., Pérez-Chaca M.V., Vigliocco A., Abdala G. (2011): Short-term cold stress in two cultivars of Digitaria eriantha: Effects on stress-related hormones and antioxidant defense system. Acta Physiologiae Plantarum, 33: 497–507.
https://doi.org/10.1007/s11738-010-0573-z
Guo Z., Ou W., Lu S., Zhong Q. (2006): Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry, 44: 828–836.
https://doi.org/10.1016/j.plaphy.2006.10.024
Guy C.L. (1990): Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 41: 187–223.
https://doi.org/10.1146/annurev.pp.41.060190.001155
Hossain Z., López-Climent M.F., Arbona V., Pérez-Clemente R.M., Gómez-Cadenas A. (2009): Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage. Plant Physiology, 166: 1391–1404.
https://doi.org/10.1016/j.jplph.2009.02.012
Hsieh T.H., Lee J.T., Yang P.T., Chiu L.H., Charng Y.Y., Wang Y.C., Chan M.T. (2004): Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiology, 135: 1145–1155.
Jain M., Mathur G., Konl S., Sarin N.B. (2001): Ameliorative effects of proline on salt stress lipid peroxidation in cell lines of groundnut (Arachis hypogea L.). Plant Cell Reports, 20: 463–468.
https://doi.org/10.1007/s002990100353
Kaur G., Kumar S., Thakur P., Malik J.A., Bhandhari K., Sharma K.D., Nayyar H. (2011): Involvement of proline in response of chickpea (Cicer arietinum L.) to chilling stress at reproductive stage. Scientia Horticulturae,
https://doi.org/10.1016/j.scienta.2011.01.037
128: 174–181.
Khedr A.H.A., Abbas M.A., Wahid A.A.A., Quick W.P., Abogadallah G.M. (2003): Proline induces the expression of salt-stress responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. Journal of Experimental Botany, 54: 2553–2562.
https://doi.org/10.1093/jxb/erg277
Li H.S. (2000): Experimental technique of plant physiology and biochemistry. In: Xue Y. (ed.): Experimental Principles and Technique of Plant Physiology and Biochemistry. Beijing, Higher Education Press: 195–197.
Lu S., Wang X., Guo Z. (2013): Differential responses to chilling in Stylosanthes guianensis (Aublet) Sw. and its mutants. Agronomy Journal, 105: 377–382.
https://doi.org/10.2134/agronj2012.0333
Mantyla E., Lang V., Palva E.T. (1995): Role of abscisic acid in droughtinduced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant Physiology, 107: 141–148.
https://doi.org/10.1104/pp.107.1.141
Matsumura T., Tabayashi N., Kamagata Y., Souma C., Saruyama H. (2002): Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiologia Plantarum, 116: 317–327.
https://doi.org/10.1034/j.1399-3054.2002.1160306.x
Matteucci M., D’Angeli S., Errico S., Lamanna R., Perrotta G., Altamura M.M. (2011): Cold affects the transcription of fatty acid desaturases and oil quality in the fruit of Olea europaea L. genotypes with different cold hardiness. Journal of Experimental Botany, 62: 3403–3420.
https://doi.org/10.1093/jxb/err013
Miura K., Ohta M., Nakazawa M., Ono M., Hasegawa P.M. (2011): ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. Plant Journal, 67: 269–279.
https://doi.org/10.1111/j.1365-313X.2011.04589.x
Ruelland E., Vaultier M.N., Zachowski A., Hurry V., Kader J.C., Delseny M. (2009): Cold signaling and cold acclimation in plants. Advances in Botanical Research, 49: 35–150.
Sebnem K., Sebnem E., Zehra P. (2004): Antioxidative enzyme activity, lipid peroxidation, and proline accumulation in the callus tissues of salt and drought tolerant and sensitive pumpkin genotypes under chilling stress. Horticulture Environment and Biotechnology, 54: 319–325.
Sinha S., Mukherjee P.K., Mukherjee K., Pal M., Mandal S.C., Saha B. (2000): Evaluation of antipyretic potential of Nelumbo nucifera stalk extract. Phytotherapy Research, 14: 272–274.
https://doi.org/10.1002/1099-1573(200006)14:4<272::AID-PTR556>3.0.CO;2-H
Suzuki N., Koussevitzky S., Mittler R., Miller G. (2011): ROS and redox signaling in the response of plants to abiotic stress. Plant Cell Environment, 35: 259–270.
https://doi.org/10.1111/j.1365-3040.2011.02336.x
Tang H., Zhang D., Yuan S., Zhu F., Xu F., Fu F., Wang S., Lin H. (2014): Plastid signals induce ALTERNATIVE OXIDASE expression to enhance the cold stress tolerance in Arabidopsis thaliana. Plant Growth Regulation, 74: 275–283.
https://doi.org/10.1007/s10725-014-9918-8
Theocharis A., Clément C., Barka E.A. (2012): Physiological and molecular changes in plants grown at low temperatures. Planta, 235: 1091–1105.
https://doi.org/10.1007/s00425-012-1641-y
Walker D.J., Romero P., Correal E. (2010): Cold tolerance, water relations and accumulation of osmolytes in Bituminaria bituminosa. Biologia Plantarum, 54: 293–298.
https://doi.org/10.1007/s10535-010-0051-x
Wang Q.C., Zhang X.Y. (2005): The biological and ecological characteristics of lotus. In: Chen Y.J. (ed.): Colored Illustration of Lotus Cultivars in China. Beijing, Forestry Press: 30–31. (in Chinese)
Xiao H., Tattersall E.A., Siddiqua M.K., Cramer G.R., Nassuth A. (2008): CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant Cell Environment, 31: 1–10.
Xiong L., Schumaker K.S., Zhu J.K. (2002): Cell signalling for cold, drought, and salt stresses. Plant Cell, 14: 165–183.
https://doi.org/10.1105/tpc.000596
Yang Q., Gao J., He W., Dou T., Ding L., Wu J., Li C., Peng X., Zhang S., Yi G. (2015): Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genomics, 16: 446.
https://doi.org/10.1186/s12864-015-1551-z
Yang Z., Sheng J., Lv K., Ren L., Zhang D. (2019): Y2SK2 and SK3 type dehydrins from Agapanthus praecox can improve plant stress tolerance and act as multifunctional protectants. Plant Science, 284: 143–160.
https://doi.org/10.1016/j.plantsci.2019.03.012
Zhang D., Ren L., Yue J.H., Wang L., Zhuo L.H., Shen X.H. (2013): A comprehensive analysis of flowering transition in Agapanthus praecox ssp. orientalis (Leighton) Leighton by using transcriptomic and proteomic techniques. Journal of Proteomics, 80: 1–25.
https://doi.org/10.1016/j.jprot.2012.12.028