Evaluation of ElecTIS bioreactor for the micropropagation of Malus sylvestris (L.) Mill., an important autochthonous species of Albania


Sota V., Benelli C., Çuko B., Papakosta E., Depaoli C., Lambardi M., Kongjika E. (2021): Evaluation of ElecTIS bioreactor for the micropropagation of Malus sylvestris (L.) Mill., an important autochthonous species of Albania. Hort. Sci. (Prague), 48: 12–21.

download PDF

Malus sylvestris (L.) Mill., an economically-important fruit tree, is native to Albania and in many parts of Europe. It is cultivated as an ornamental tree, while its fruits are collected for food and a source of antioxidant substances. It is included in The IUCN Red List of Threatened Species. For these reasons, it is very important to optimise a micropropagation protocol, in order to obtain great numbers of clonal plantlets for ex situ conservation and production purposes. A liquid culture in a temporary immersion system (TIS) is a recently-proposed system for large-scale in vitro plant propagation. In this study, lateral buds of M. sylvestris were inoculated in MS medium with BAP (1 mg/L) and NAA (0.1 mg/L). In order to avoid oxidative stress, different antioxidants were previously tested with the culture in a gelled medium, and the combination of ascorbic acid and citric acid (both at 100 mg/L) was selected for the following culture in TIS. Stabilised explants were then cultivated in ElecTIS, an innovative TIS bioreactor, and in a semisolid medium, after which the two culture systems were evaluated. Overall, the ElecTIS showed to be more effective for all the tested parameters.

Alabarrán J., Bertrand B., Lartaud M., Etienne H. (2005): Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffea arabica) somatic embryos. Plant Cell Tissue and Organ Culture, 81: 27–36. https://doi.org/10.1007/s11240-004-2618-8
Be L.V., Debergh P.C. (2006): Potential low cost micropropagation of pineapple (Ananas comosus). South African Journal of Botany, 72: 191–194. https://doi.org/10.1016/j.sajb.2005.07.002
Benelli C., De Carlo A. (2018): In vitro multiplication and growth improvement of Olea europaea L. cv. Canino with temporary immersion system (Plantform™). 3 Biotech, 8: 317. https://doi.org/10.1007/s13205-018-1346-4
Bhatt A., Kansal S., Singh R., Sood C.H. (2012): Low-cost tissue culture procedures for micropropagation of apple root stocks. International Journal of Developmental Biology, 6: 67–72.
Boudabous M., Mars M., Marzougui N., Ferchichi A. (2010): Micropropagation of apple (Malus domestica L. cultivar Douce de Djerba) through in vitro culture of axillary buds. Acta Botanica Gallica, 157: 513–524.  https://doi.org/10.1080/12538078.2010.10516227
Capuana M., Depaoli C., Ozudogru E.A., Lambardi M. (2018): Una nuova proposta per la coltura liquida in immersione temporanea: il bioreattore ‘ElecTIS’. Acta Italus Hortus, 21: 98–100. (with English abstract).
Carvalho L., Ozudogru E.A., Lambardi M., Paiva L. (2019): Temporary immersion system for micropropagation of tree species: a bibliographic and systematic review. Notulae Botanica Horti Agrobotanici, 47: 269–277.  https://doi.org/10.15835/nbha47111305
Chakrabarty D., Hahn E.J., Yoon Y.J., Paek K.Y. (2003): Micropropagation of apple rootstock M.9 EMLA using bioreactor. Journal of Horticultural Science and Biotechnology, 78: 605–609. https://doi.org/10.1080/14620316.2003.11511671
Damiano C., Arias Padro M.D., Frattarelli A. (2008): Propagation and establishment in vitro of myrtle (Myrtus communis L.), pomegranate (Punica granatum L.) and mulberry (Morus alba L.). Propagation of Ornamental Plants, 8: 3–8.
Dey S. (2005): Cost-effective mass cloning of plants in liquid media using a novel Growtek bioreactor. In: Hvoslef-Eide A.K., Preil W. (eds), Liquid Culture Systems for In Vitro Plant Propagation. Springer, Dordrecht: 127–141.
Dobránszki J., Teixeira da Silva J.A. (2010): Micropropagation of apple – A review. Biotechnology Advances, 28: 462–88.  https://doi.org/10.1016/j.biotechadv.2010.02.008
Etienne H., Berthouly M. (2002): Temporary immersion systems in plant micropropagation. Plant Cell, Tissue and Organ Culture, 69: 215–231. https://doi.org/10.1023/A:1015668610465
Firoozabady E., Gutterson N. (2003): Cost-effective in vitro propagation methods for pineapple. Plant Cell Reports, 21: 844–850.  https://doi.org/10.1007/s00299-003-0577-x
Gatica-Arias A.M., Arrieta-Espinoza G., Esquivel A.M.E. (2008): Plant regeneration via indirect somatic embryogenesis and optimisation of genetic transformation in Coffea arabica L. cvs Caturra and Catuaí. Electronic Journal of Biotechnology, 11: 1–12.
Gatti E., Sgarbi E., Ozudogru E.A., Lambardi M. (2017): The effect of PlantformTM bioreactor on micropropagation of Quercus robur in comparison to a conventional in vitro culture system on gelled medium, and assessment of the microenvironment influence on leaf structure. Plant Biosystems, 151: 1129–1136.  https://doi.org/10.1080/11263504.2017.1340356
Georgiev V., Schumann A., Pavlov A., Bley T. (2014): Temporary immersion systems in plant biotechnology. Engineering in Life Sciences, 14: 607–621. https://doi.org/10.1002/elsc.201300166
Grazhdani M., Kongjika E., Sota V., Xhixha E. (2014): Avoidance of polyphenolic oxidation of explants of some albanian cultivars of Malus sp. during early micropropagation stages. In: Proceedings of  “2nd International Conference on Applied Biotechnology”. Tirana, Albania: 99–107.
GRIN (2010): Germplasm Resources Information Network - (GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland. Available at http://www.ars-grin.gov/cgi-bin/npgs/html/index.pl
Hutchinson J.F. (1984): Factors affecting shoot proliferation and root initiation in organ cultures of the apple Norther Spy. Scientia Horticulturae, 22: 347–358. https://doi.org/10.1016/S0304-4238(84)80006-0
IUCN (2019): The IUCN Red List of threatened species. Version 2019-1. Available at https://www.iucnredlist.org
Jafarkhani Kermani M., Hosseini Z.S., Habashi A.A. (2009): A refined tissue culture medium for in vitro proliferation of apple rootstocks. Acta Horticulturae (ISHS), 829: 313–318. https://doi.org/10.17660/ActaHortic.2009.829.48
Kereša S., Mihovilović Bošnjak A., Barić M., Habuš Jerčić I., Šarčević H., Biško A. (2012): Efficient axillary shoot proliferation and in vitro rooting of apple cv. ‘Topaz’. Notulae Botanica Horti Agrobotanici, 40: 113–118. https://doi.org/10.15835/nbha4017211
Kongjika E., Zekaj Z.H., Çaushi E., Stamo I. (2002): Bioteknologjia e bimëve - Kulturat “in vitro”. Academy of Sciences of Albania, Tirana, Albania: 20–27. (in Albanian).
Laimer Da Câmara Machado M., Hanzer V., Kalthoff B., Weiss H., Mattanovich D., Regner F., Katinger F.W.D. (1991): A new, efficient method using 8-hydroxy-quinolinol-sulfate for the initiation and establishment of tissue cultures of apple from adult material. Plant Cell Tissue and Organ Culture, 27: 155–160. https://doi.org/10.1007/BF00041284
Lambardi M. (2012): Micropropagazione in coltura liquida con sistema ad immersione temporanea. Rivista di Frutticoltura e Ortofloricoltura, 12: 32–38. (with English abstract).
Lambardi M., Ozudogru E.A., Jain S.M. (2013): Protocols for Micropropagation of Selected Economically-Important Horticultural Plants. Methods in Molecular Biology, Vol. 994. Springer, New York Heidelberg Dordrecht London: XVI: 488.
Lyam P.T., Musa M.L., Jamaleddine Z.O., Okere A.U., Odofin W.T. (2012): The potential of temporary immersion bioreactors (TIBs) in meeting crop production demand in Nigeria.  https://doi.org/10.5296/jbls.v3i1.1156
Journal of Biology and Life Science, 3: 66–86.
Mbiyu M., Muthoni M., Kabira J., Muchira C.H., Pwaipwai P., Ngaruiya J., John Onditi J., Otiemo S. (2012): Comparing liquid and solid media on the growth of plantlets from three Kenyan potato cultivars. American Journal of Experimental Agriculture, 2: 81–89. https://doi.org/10.9734/AJEA/2012/715
Mehrotra S., Goel M.K., Kukreja A.K., Mishra B.N. (2007): Efficiency of liquid culture systems over conventional micropropagation: A progress towards commercialization. African Journal of Biotechnology, 6: 1484–1492.
Mehta M., Ram R., Bhattacharya A. (2014): A simple and cost effective liquid culture system for the micropropagation of two commercially important apple rootstocks. Indian Journal of Experimental Biology, 52: 748–754.
Modgil M., Sharma D.R., Bhardwaj S.V. (1999): Micropropagation of apple cv. ‘Tydeman’s’ ‘Early Worcester’. Scientia Horticulturae, 81: 179–188. https://doi.org/10.1016/S0304-4238(98)00259-3
Murashige T., Skoog F. (1962): A revised medium for rapid growth and bioassays with tabacco cultures. Physiologia Plantarum, 15: 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Pence V.C. (2011): Evaluating costs for the in vitro propagation and preservation of endangered plant species. In vitro Cellular & Development Biology-Plant, 47: 176–187.
Pierik R.L.M. (1987): Vegetative propagation. In: Pierik R.L.M. (ed.): In Vitro Culture of Higher Plants. Martinus Nijhoff Publishers, Dordrecht, Boston: 183–230.
Ramírez-Mosqueda M.A., Iglesias-Andreu L.G. (2016): Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia Jacks. In Vitro Cellular and Development Biology-Plant, 52: 154–160. https://doi.org/10.1007/s11627-015-9735-4
Stojiljković D., Arsić I., Tadić V. (2016): Extracts of wild apple fruit (Malus sylvestris (L.) Mill., Rosaceae) as a source of antioxidant substances for use in production of nutraceuticals and cosmeceuticals, Industrial Crops and Products, 80: 165–176.
Takayama S., Akita M. (1994): The types of bioreactors used for shoots and embryos. Plant Cell, Tissue and Organ Culture, 39: 147–156. https://doi.org/10.1007/BF00033922
Teixeira Da Silva J.A., Dobránszki J. (2013): How timing of sampling can affect the outcome of the quantitative assessment of plant organogenesis. Scientia Horticulturae, 159: 59–66.  https://doi.org/10.1016/j.scienta.2013.05.001
Thorpe T.A., Harry I.S. (1997): Application of plant tissue culture to horticulture. Acta Horticulturae (ISHS), 447: 39–50. https://doi.org/10.17660/ActaHortic.1997.447.2
Venutolo S.A., Aguilar T.S. (2015): Mass micropropagation of Stevia rebaudiana Bertoni in temporary immersion systems. Cultivos tropicales, 36: 50–57.
Volz R.K., Mcghie T. (2011): Genetic variability in apple fruit polyphenol composition in Malus domestica and Malus sieversii germplasm grown its of Fuji apple and Junhua pear cultured in vitro. Journal of Horticultural Science, 69: 833–839.
Zhu L.H., Li X.Y., Welander M. (2005): Optimization of growing conditions for the apple rootstock M26 grown in RITA containers using temporary immersion principle. Plant Cell, Tissue and Organ Culture, 81: 313–318. https://doi.org/10.1007/s11240-004-6659-9
Ziv M. (2005): Simple bioreactors for mass propagation of plants. Plant Cell, Tissue and Organ Culture, 81: 277–285. https://doi.org/10.1007/s11240-004-6649-y
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti