LED lighting affected the growth and metabolism of eggplant and tomato transplants in a greenhouse


Wojciechowska R., Kołton A., Kunicki E., Mrowiec K., Bathelt P. (2020): LED lighting affected the growth and metabolism of eggplant and tomato transplants in a greenhouse. Hort. Sci. (Prague), 47: 150–157. 

download PDF

Light-emitting diodes (LEDs) were used for the spring greenhouse cultivation of eggplant (Solanum melongena L.) ‘Milar F1’ and tomato (S. lycopersicon L.) ‘Benito F1’ transplants. Seedlings were grown under natural light conditions with the supplemental LED light. A 16-h photoperiod provided plants with a DLI of 12.6 (eggplant) and 9.6 (tomato) mol m2/day. Four supplemental light spectra were tested: L1 (90% red + 10% blue); L2 (80% red + 20% blue); L3 (43% red + 42% blue+15% green) and L4 (56% red + 26% blue + 15% green + 3% UV-A). The PPFD in each LED light treatment was 150 ± 20 µmol/m2·s. Compared to the control plants (without LED lighting), the eggplant transplants had about a 25% larger leaf area and a higher level of total phenol content as well as a higher antiradical scavenging activity under the L1 spectrum. The favourable spectrum for the tomato transplants consisted of red to blue in a ratio of 1 : 1 mixed with a green light (L3) – the leaves were characterised by a higher content of dry matter, soluble sugars, photosynthetic pigments and total phenols; also the radical scavenging activity increased in comparison to the control group. It was shown that the supplemental irradiation of transplants was economically acceptable. 

Bantis F., Smirnakou S., Ouzounis T., Koukounaras A., Ntagkas N., Radoglou K. (2018): Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia Horticulturae, 235: 437–451.  https://doi.org/10.1016/j.scienta.2018.02.058
Cicco N., Lanorte M. T., Paraggio M., Viggiano M., Lattanzio V. (2009): A reproducible, rapid and inexpensive Folin–Ciocalteau micro-method in determining phenolics of plant methanol extracts. Microchemical Journal, 91: 107–110.  https://doi.org/10.1016/j.microc.2008.08.011
Długosz-Grochowska O., Wojciechowska R., Kruczek M., Habela A. (2017): Supplemental lighting with LEDs improves biochemical composition of two Valerianella locusta (L.) cultivars. Horticulture, Environment, and Biotechnology, 58: 441–449.  https://doi.org/10.1007/s13580-017-0300-4
Dursun A., Güvenç I., Turan M. (2002): Effects of different levels of humic acid on seedlings growth and macro and micronutrient contents of tomato and eggplant. Acta Agrobotanica, 56: 81–88.
Dutta Gupta S., Agarwal A. (2017): Artificial lighting system for plant growth and development: Chronological advancement, working principles, and comparative assessment. In: Dutta Gupta S. (ed.): Light emitting diodes for agriculture. Springer: 1–25.
Folta K. M., Carvalho S. D. (2015): Photoreceptors and control of horticultural plant traits. HortScience, 50: 1274–1280.  https://doi.org/10.21273/HORTSCI.50.9.1274
Fukumoto L., Mazza G. (2000): Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of Agriculture Food Chemistry, 48: 3597–3604.  https://doi.org/10.1021/jf000220w
Galvão V.C., Fankhauser C. (2015): Sensing the light environment in plants: photoreceptors and early signalling steps. Current Opinion in Neurobiology, 34: 46–53. https://doi.org/10.1016/j.conb.2015.01.013
Gomez C., Mitchell C. A. (2015): Growth responses of tomato seedlings to different spectra of supplemental lighting. HortScience, 50: 112–118.  https://doi.org/10.21273/HORTSCI.50.1.112
Kang W.H., Park J.S., Park K.S., Son J.E. (2016): Leaf photosynthetic rate, growth, and morphology of lettuce under different fractions of red, blue, and green light from light-emitting diodes (LEDs). Horticulture, Environment, and Biotechnology, 57: 573–579.  https://doi.org/10.1007/s13580-016-0093-x
Khoshimkhujaev B., Kwon J.K., Park K.S., Choi H.G., Lee S.Y. (2014): Effect of monochromatic UV-A LED irradiation on the growth of tomato seedlings. Horticulture, Environment, and Biotechnology, 55: 287–292.  https://doi.org/10.1007/s13580-014-0021-x
Kim E.Y., Park S.A., Park B.J., Lee Y., Oh M.M. (2014): Growth and antioxidant phenolic compounds in cherry tomato seedlings grown under monochromatic light-emitting diodes. Horticulture, Environment, and Biotechnology, 55: 506–513.  https://doi.org/10.1007/s13580-014-0121-7
Kong S.G., Okajima K. (2016): Diverse photoreceptors and light responses in plants. Journal of Plant Research, 129: 111–114.  https://doi.org/10.1007/s10265-016-0792-5
Kopsel D.A., Sams C.E., Morrow R.C. (2015): Blue wavelengths from LED lighting increase nutritionally important metabolites in specialty crops. HortScience, 50: 1285–1288.  https://doi.org/10.21273/HORTSCI.50.9.1285
Lichtenthaler H.K., Wellburn A.R. (1983): Determinations of a total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 603: 591–592.  https://doi.org/10.1042/bst0110591
Martínez-Valverde I., Periago M. J., Provan G, Chesson A. (2002): Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture, 82: 323–330.  https://doi.org/10.1002/jsfa.1035
Mitchell C.A. (2015): Academic research perspective of LEDs for the horticulture industry. HortScience, 50: 1293–1296.  https://doi.org/10.21273/HORTSCI.50.9.1293
Morrow R. C. (2008): LED lighting in horticulture. HortScience, 43: 1947–1950.  https://doi.org/10.21273/HORTSCI.43.7.1947
Mosadegh H., Trivellini A., Ferrante A., Lucchesini M., Vernieri P., Mensuali A. (2018): Applications of UV-B lighting to enhance phenolic accumulation of sweet basil. Scientia Horticulturae, 229: 107–116.  https://doi.org/10.1016/j.scienta.2017.10.043
Olle M., Viršilė A. (2013): The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agricultural and Food Science, 22: 223–234.  https://doi.org/10.23986/afsci.7897
Ouzounis T., Heuvelink E., Ji, Y., Schouten H.J., Visser R. G.F., Marcelis L.F.M. (2015): Blue and red LED lighting affects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes. Acta Horticulturae (ISHS), 1134: 251–258.
Peixe A., Ribeiro H., Ribeiro A., Soares M., Machado R., Rato A.E., Coelho R. (2018): Analysis of growth parameters for crop vegetables under broad and narrow LED spectra and fluorescent light tubes at different PPFs. Journal of Plant Studies, 7: 47–60. https://doi.org/10.5539/jps.v7n1p47
Pekkarinen S. S., Stoeckmann H., Schwarz K., Heininen I. M., Hopia A. I. (1999): Antioxidant activity and partioning of phenolic acids in bulk and emulsified methyl linoleate. Journal of Agricultural and Food Chemistry, 47: 3036–3043.  https://doi.org/10.1021/jf9813236
Raigón M.D., Prohens J., Muñoz-Falcón J.E., Nuez F. (2008): Comparison of eggplant landraces and commercial varieties for fruit content of phenolics, minerals, dry matter and protein. Journal of Food Composition and Analysis, 21: 370–376.  https://doi.org/10.1016/j.jfca.2008.03.006
Samuolienė G., Brazaitytė A., Duchovskis P., Viršilė A., Janauskienė J., Sirtautas R., Novičkovas, A., Sakalauskienė S., Sakalauskaitė J. (2012): Cultivation of vegetable transplants using solid-state lamps for the short-wavelength supplementary lighting in greenhouses. Acta Horticulturae (ISHS), 952: 885–892.  https://doi.org/10.17660/ActaHortic.2012.952.112
Samuolienė G., Brazaitytė A., Vaštakaitė V. 2017. Light-emitting diodes (LEDs) for improved nutritional quality. Dutta Gupta S. (ed). Light emitting diodes for agriculture. Springer: 149–190.
Singh D., Basu C., Meinardt-Wollweber M., Roth B. (2015): LEDs for energy efficient greenhouse lighting. Renewable and Sustainable Energy Reviews, 49: 139–147.  https://doi.org/10.1016/j.rser.2015.04.117
Statista (2019): Global production of vegetables. Available at www.statista.com/statistics/264065/global-production-of-vegetables-by-type/
Terashima I., Fujita T., Inoue T., Chow W.S., Oguchi R. (2009): Green light driver leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiology, 50: 684–697.  https://doi.org/10.1093/pcp/pcp034
Viršilė A., Olle M., Duchovskis P. (2017) : LED lighting in horticulture. In: Dutta Gupta S. (ed): Light emitting diodes for agriculture. Springer: 113–147.
Wang Y., Folta K.M. (2013): Contributions of green light to plant growth and development. American Journal of Botany, 100: 70–78.  https://doi.org/10.3732/ajb.1200354
Wojciechowska R., Długosz-Grochowska O., Kołton A., Żupnik M. (2015): The effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce in two winter cycles. Scientia Horticulturae, 187: 80–86.  https://doi.org/10.1016/j.scienta.2015.03.006
Xiaoying L., Shirong G., Taotao C., Zhigang X., Tezuka T. (2012): Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). African Journal of Biotechnology, 11: 6169–6177.  https://doi.org/10.5897/AJB11.1191
Yemm E.W., Wills A.J. (1954): The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57: 508–514.  https://doi.org/10.1042/bj0570508
Zhang T., Maruhnih S.A., Folta K.M. (2011): Green light induces shade avoidance symptoms. Plant Physiology, 157: 1528–1536. https://doi.org/10.1104/pp.111.180661
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti