LED lighting affected the growth and metabolism of eggplant and tomato transplants in a greenhouse
Bantis F., Smirnakou S., Ouzounis T., Koukounaras A., Ntagkas N., Radoglou K. (2018): Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia Horticulturae, 235: 437–451.
https://doi.org/10.1016/j.scienta.2018.02.058
Cicco N., Lanorte M. T., Paraggio M., Viggiano M., Lattanzio V. (2009): A reproducible, rapid and inexpensive Folin–Ciocalteau micro-method in determining phenolics of plant methanol extracts. Microchemical Journal, 91: 107–110.
https://doi.org/10.1016/j.microc.2008.08.011
Długosz-Grochowska O., Wojciechowska R., Kruczek M., Habela A. (2017): Supplemental lighting with LEDs improves biochemical composition of two Valerianella locusta (L.) cultivars. Horticulture, Environment, and Biotechnology, 58: 441–449.
https://doi.org/10.1007/s13580-017-0300-4
Dursun A., Güvenç I., Turan M. (2002): Effects of different levels of humic acid on seedlings growth and macro and micronutrient contents of tomato and eggplant. Acta Agrobotanica, 56: 81–88.
Dutta Gupta S., Agarwal A. (2017): Artificial lighting system for plant growth and development: Chronological advancement, working principles, and comparative assessment. In: Dutta Gupta S. (ed.): Light emitting diodes for agriculture. Springer: 1–25.
Folta K. M., Carvalho S. D. (2015): Photoreceptors and control of horticultural plant traits. HortScience, 50: 1274–1280.
https://doi.org/10.21273/HORTSCI.50.9.1274
Fukumoto L., Mazza G. (2000): Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of Agriculture Food Chemistry, 48: 3597–3604.
https://doi.org/10.1021/jf000220w
Galvão V.C., Fankhauser C. (2015): Sensing the light environment in plants: photoreceptors and early signalling steps. Current Opinion in Neurobiology, 34: 46–53.
https://doi.org/10.1016/j.conb.2015.01.013
Gomez C., Mitchell C. A. (2015): Growth responses of tomato seedlings to different spectra of supplemental lighting. HortScience, 50: 112–118.
https://doi.org/10.21273/HORTSCI.50.1.112
Kang W.H., Park J.S., Park K.S., Son J.E. (2016): Leaf photosynthetic rate, growth, and morphology of lettuce under different fractions of red, blue, and green light from light-emitting diodes (LEDs). Horticulture, Environment, and Biotechnology, 57: 573–579.
https://doi.org/10.1007/s13580-016-0093-x
Khoshimkhujaev B., Kwon J.K., Park K.S., Choi H.G., Lee S.Y. (2014): Effect of monochromatic UV-A LED irradiation on the growth of tomato seedlings. Horticulture, Environment, and Biotechnology, 55: 287–292.
https://doi.org/10.1007/s13580-014-0021-x
Kim E.Y., Park S.A., Park B.J., Lee Y., Oh M.M. (2014): Growth and antioxidant phenolic compounds in cherry tomato seedlings grown under monochromatic light-emitting diodes. Horticulture, Environment, and Biotechnology, 55: 506–513.
https://doi.org/10.1007/s13580-014-0121-7
Kong S.G., Okajima K. (2016): Diverse photoreceptors and light responses in plants. Journal of Plant Research, 129: 111–114.
https://doi.org/10.1007/s10265-016-0792-5
Kopsel D.A., Sams C.E., Morrow R.C. (2015): Blue wavelengths from LED lighting increase nutritionally important metabolites in specialty crops. HortScience, 50: 1285–1288.
https://doi.org/10.21273/HORTSCI.50.9.1285
Lichtenthaler H.K., Wellburn A.R. (1983): Determinations of a total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 603: 591–592.
https://doi.org/10.1042/bst0110591
Martínez-Valverde I., Periago M. J., Provan G, Chesson A. (2002): Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture, 82: 323–330.
https://doi.org/10.1002/jsfa.1035
Mitchell C.A. (2015): Academic research perspective of LEDs for the horticulture industry. HortScience, 50: 1293–1296.
https://doi.org/10.21273/HORTSCI.50.9.1293
Morrow R. C. (2008): LED lighting in horticulture. HortScience, 43: 1947–1950.
https://doi.org/10.21273/HORTSCI.43.7.1947
Mosadegh H., Trivellini A., Ferrante A., Lucchesini M., Vernieri P., Mensuali A. (2018): Applications of UV-B lighting to enhance phenolic accumulation of sweet basil. Scientia Horticulturae, 229: 107–116.
https://doi.org/10.1016/j.scienta.2017.10.043
Olle M., Viršilė A. (2013): The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agricultural and Food Science, 22: 223–234.
https://doi.org/10.23986/afsci.7897
Ouzounis T., Heuvelink E., Ji, Y., Schouten H.J., Visser R. G.F., Marcelis L.F.M. (2015): Blue and red LED lighting affects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes. Acta Horticulturae (ISHS), 1134: 251–258.
Peixe A., Ribeiro H., Ribeiro A., Soares M., Machado R., Rato A.E., Coelho R. (2018): Analysis of growth parameters for crop vegetables under broad and narrow LED spectra and fluorescent light tubes at different PPFs. Journal of Plant Studies, 7: 47–60.
https://doi.org/10.5539/jps.v7n1p47
Pekkarinen S. S., Stoeckmann H., Schwarz K., Heininen I. M., Hopia A. I. (1999): Antioxidant activity and partioning of phenolic acids in bulk and emulsified methyl linoleate. Journal of Agricultural and Food Chemistry, 47: 3036–3043.
https://doi.org/10.1021/jf9813236
Raigón M.D., Prohens J., Muñoz-Falcón J.E., Nuez F. (2008): Comparison of eggplant landraces and commercial varieties for fruit content of phenolics, minerals, dry matter and protein. Journal of Food Composition and Analysis, 21: 370–376.
https://doi.org/10.1016/j.jfca.2008.03.006
Samuolienė G., Brazaitytė A., Duchovskis P., Viršilė A., Janauskienė J., Sirtautas R., Novičkovas, A., Sakalauskienė S., Sakalauskaitė J. (2012): Cultivation of vegetable transplants using solid-state lamps for the short-wavelength supplementary lighting in greenhouses. Acta Horticulturae (ISHS), 952: 885–892.
https://doi.org/10.17660/ActaHortic.2012.952.112
Samuolienė G., Brazaitytė A., Vaštakaitė V. 2017. Light-emitting diodes (LEDs) for improved nutritional quality. Dutta Gupta S. (ed). Light emitting diodes for agriculture. Springer: 149–190.
Singh D., Basu C., Meinardt-Wollweber M., Roth B. (2015): LEDs for energy efficient greenhouse lighting. Renewable and Sustainable Energy Reviews, 49: 139–147.
https://doi.org/10.1016/j.rser.2015.04.117
Statista (2019): Global production of vegetables. Available at www.statista.com/statistics/264065/global-production-of-vegetables-by-type/
Terashima I., Fujita T., Inoue T., Chow W.S., Oguchi R. (2009): Green light driver leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiology, 50: 684–697.
https://doi.org/10.1093/pcp/pcp034
Viršilė A., Olle M., Duchovskis P. (2017) : LED lighting in horticulture. In: Dutta Gupta S. (ed): Light emitting diodes for agriculture. Springer: 113–147.
Wang Y., Folta K.M. (2013): Contributions of green light to plant growth and development. American Journal of Botany, 100: 70–78.
https://doi.org/10.3732/ajb.1200354
Wojciechowska R., Długosz-Grochowska O., Kołton A., Żupnik M. (2015): The effects of LED supplemental lighting on yield and some quality parameters of lamb’s lettuce in two winter cycles. Scientia Horticulturae, 187: 80–86.
https://doi.org/10.1016/j.scienta.2015.03.006
Xiaoying L., Shirong G., Taotao C., Zhigang X., Tezuka T. (2012): Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). African Journal of Biotechnology, 11: 6169–6177.
https://doi.org/10.5897/AJB11.1191
Yemm E.W., Wills A.J. (1954): The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57: 508–514.
https://doi.org/10.1042/bj0570508
Zhang T., Maruhnih S.A., Folta K.M. (2011): Green light induces shade avoidance symptoms. Plant Physiology, 157: 1528–1536.
https://doi.org/10.1104/pp.111.180661