Physio-biochemical responses of sage genotypes to chilling

https://doi.org/10.17221/81/2018-HORTSCICitation:

Kalisz A., Sękara A., Pokluda R., Jezdinský A., Neugebauerová J., Grabowska A., Jurkow R., Slezák K.A. (2020): Physio-biochemical responses of sage genotypes to chilling. Hort. Sci. (Prague), 47: 158–168. 

download PDF

This study evaluated sage (Salvia officinalis L.) genotypes (cultivars: ‘Berggarten’, ‘Icterina’, ‘Purpurascens’, ‘Tricolor’, local Czech accessions from the Lednice region, South Moravia: ‘LDN-1’ and ‘LDN-2’) subjected to chilling (4 °C, 2 weeks, 18 °C ‒ control) for comparison of antioxidant defence systems. Chilling caused the most significant increase in the peroxidase activity in ‘Purpurascens’ and ‘Tricolor’, by 108.5% and 15.7%, respectively, while the catalase was unaffected by the low temperature. The phenolics increased in ‘Purpurascens’ and ‘LDN-1’ by 17.2% and 18.1%, respectively, and decreased in ‘LDN-2’ and ‘Tricolor’, by 10.6% and 11.7%, respectively, as a result of the chilling. In the sage treated with chilling, the scavenging of 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH•) was higher (by 3%, on average), especially in ‘Berggarten’, ‘Icterina’, and ‘Purpurascens’, than in the control. However, the chilled ‘LDN-2’ and ‘Tricolor’ showed lower antioxidant∙ activity in comparison to the control. The malondialdehyde remained stable or was higher in the control, with the only exception being ‘LDN-1’, where its content increased by 11.4% in the chilled sage. In most genotypes, the content of the dry weight increased in the chilled plants by 9.4% on average. The responses of ‘Icterina’ and ‘Purpurascens’ to the low temperature was the most significant, but resulted from different physiological mechanisms. ‘Purpurascens’ showed the highest increase in the peroxidase activity due to the chilling, while the highest increase in the antioxidant activity was observed for ‘Icterina’.

References:
Abid M., Abid Ali Khan M.M. (2019): Medicinal plant: Environment interaction and mitigation to abiotic stres. In: Egamberdieva D., Tiezzi A. (eds): Medically Important Plant Biomes: Source of Secondary Metabolites. Singapore, Springer Nature Singapore Pte Ltd.: 21–50.
 
Aebi H. (1984): Catalase in vitro. Methods in Enzymology, 105: 121–126.
 
Afonso A.F., Pereira O.R., Fernandes Â., Calhelha R.C., Silva A.M.S., Ferreira I.C.F.R., Cardoso S.M. (2019): Phytochemical composition and bioactive effects of Salvia africana, Salvia officinalis ‘Icterina’ and Salvia mexicana aqueous extracts. Molecules, 24: 4327 https://doi.org/10.3390/molecules24234327
 
Bączek-Kwinta R., Serek B., Wątor A. (2007): Effect of chilling on total antioxidant capacity and growth processes of basil (Ocimum basilicum L.) cultivars. Herba Polonica, 53: 75–84.
 
Dhindsa R.S., Matowe W. (1981): Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation. Journal of Experimental Botany, 32: 79–91. https://doi.org/10.1093/jxb/32.1.79
 
Caverzan A., Casassola A., Brammer S.P. (2016): Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. In: Shanker A. (ed.): Abiotic and Biotic Stress in Plants ‒ Recent Advances and Future Perspectives. London, UK, InTechOpen: 463–480.
 
Cuceu A.V.P., Tofană M., Socaci S.A., Nagy M., Borș M.-D., Salanță L., Vlaic R. (2015): Studies on total polyphenols content and antioxidant activity of methanolic extracts from selected Salvia species. Bulletin UASVM Food Science and Technology, 72: 86–90.
 
Cuvelier M.E., Richard H., Berset C. (1996): Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. Journal of the American Oil Chemists’ Society, 73: 645.  https://doi.org/10.1007/BF02518121
 
Djeridane A., Yousfi M., Nadjemi B., Boutassouna D., Stocker P., Vidal N. (2006): Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compound. Food Chemistry, 97: 654–660. https://doi.org/10.1016/j.foodchem.2005.04.028
 
Gill S.S., Tuteja N. (2010): Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48: 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
 
Guo W.L., Chen R.G., Gong Z.H., Yin Y.X., Ahmed S.S., He Y.N. (2012): Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Genetics and Molecular Research, 11: 4063–4080. https://doi.org/10.4238/2012.September.10.5
 
Guo Z., Ou W., Lu S., Zhong Q. (2006): Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry, 44: 828–836. https://doi.org/10.1016/j.plaphy.2006.10.024
 
Hasanuzzaman M, Borhannuddin Bhuyan MHM, Anee TI, Parvin K, Nahar K, Al Mahmud J, Fujita M. (2019): Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8: 384. https://doi.org/10.3390/antiox8090384
 
Kalisz A., Pokluda R., Jezdinský A., Sękara A., Grabowska A., Gil J., Neugebauerová J. (2016): Chilling-induced changes in the antioxidant status of basil plants. Acta Physiologiae Plantarum, 38: 196.  https://doi.org/10.1007/s11738-016-2214-7
 
Kanase T., Guhey A., Gawas D. (2019): Activity of antioxidant enzymes in soybean genotypes under drought stress. nternational Journal of Current Microbiology and Applied Sciences, 8: 2323–2330. https://doi.org/10.20546/ijcmas.2019.809.267
 
Kang H.-M., Saltveit M.E. (2002): Effect of chilling on antioxidant enzymes and DPPH-radical scavenging activity of high- and low-vigour cucumber seedling radicles. Plant, Cell & Environment, 25: 1233–1238.
 
Karpinsky S., Wingsle G., Karpinska B., Hällgren J.-E. (2002): Low temperature stress and antioxidant mechanisms to oxidative stress in plants. In: Inzé D., Van Montagu M. (eds): Oxidative Stress in Plants. London, UK, Taylor & Francis: 85–128.
 
Karuppanapandian T., Moon J.-C., Kim C., Manoharan K., Kim W. (2011): Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science, 5: 709–725.
 
Kuk Y.I., Shin J.S., Burgos N.R., Hwang T.E., Han O., Cho B.H., Jung S., Guh J.O. (2003): Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Science, 43: 2109–2117. https://doi.org/10.2135/cropsci2003.2109
 
Kusvuran S., Kiran S., Ellialtioglu S.S. (2016): Antioxidant enzyme activities and abiotic stress tolerance relationship in vegetable crops. In: Shanker A. (ed.): Abiotic and Biotic Stress in Plants ‒ Recent Advances and Future Perspectives. London, UK, InTechOpen: 481–506.
 
Lakušić B.S., Ristić M.S., Slavkovska V.N., Stojanović D.L., Lakušić D.V. (2013): Variations in essential oil yields and compositions of Salvia officinalis (Lamiaceae) at different developmental stages. Botanica Serbica, 37: 127–139.
 
Lee D.H., Lee C.B. (2000): Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Science, 159: 75–85. https://doi.org/10.1016/S0168-9452(00)00326-5
 
Lee J.-H., Oh M.-M. (2015): Short-term low temperature increases phenolic antioxidant levels in kale. Horticulture, Environment, and Biotechnology, 56: 588–596. https://doi.org/10.1007/s13580-015-0056-7
 
Lu J., Nawaz M.A., Wei N., Cheng F., Bie Z. (2020): Suboptimal temperature acclimation enhances chilling tolerance by improving photosynthetic adaptability and osmoregulation ability in watermelon. Horticultural Plant Journal, 6: 49–60. https://doi.org/10.1016/j.hpj.2020.01.001
 
Lu Y., Foo L.Y. (2002): Polyphenolics of Salvia – a review. Phytochemistry, 59, 117–140. https://doi.org/10.1016/S0031-9422(01)00415-0
 
Lück H. (1962): Peroxidase. In: Bergmeyer H.U. (ed.): Methoden der enzymatischen analyse. Weinheim, Germany, Verlag Chemie GmbH: 895–897.
 
Molyneux P. (2004): The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Techno-logy, 26: 211–219.
 
Naikoo M.I., Dar M.I., Raghib F., Jaleel H., Ahmad B., Raina A., Khan F.A., Naushin F. (2019): Role and regulation of plants phenolics in abiotic stress tolerance: An overview. In: Khan M.I.R., Reddy P.S., Ferrante A., Khan N.A. (eds): Plant Signaling Molecules, Role and Regulation Under Stressful Environments. Elsevier: 157–168.
 
Oh M.M., Carey E.E., Rajashekar C.B. (2009): Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiology and Biochemistry, 47: 578–583. https://doi.org/10.1016/j.plaphy.2009.02.008
 
Pijanowski E., Mrożewski S., Horubała A. (1964): Technologia produktów owocowych i warzywnych [Technology of Fruit and Vegetable Products]. Warszawa, Poland, PWRiL.
 
Pohl A., Komorowska M., Kalisz A., Sękara A. (2019): Eggplant seedlings modify antioxidant system during acclima-tion to low temperature. Agrochimica, 62: 151–167.
 
Posmyk M.M., Bailly Ch., Szafrańska K., Janas K.M., Corbineau F. (2005): Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings. Journal of Plant Physiology, 162: 403–412. https://doi.org/10.1016/j.jplph.2004.08.004
 
Poulios E., Giaginis C., Vasios G.K. (2020): Current state of the art on the antioxidant activity of sage (Salvia spp.) and its bioactive components. Planta Medica, 86: 224–238. https://doi.org/10.1055/a-1087-8276
 
Rezaie R., Mandoulakani B.A., Fattahi M. (2020): Cold stress changes antioxidant defense system, phenylpropanoid contents and expression of genes involved in their biosynthesis in Ocimum basilicum L. Scientific Reports, 10: 5290.  https://doi.org/10.1038/s41598-020-62090-z
 
Rivero R.M., Ruiz J.M., García P.C., López-Lefebre L.R., Sánchez E., Romero R. (2001): Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Science, 160: 315–321. https://doi.org/10.1016/S0168-9452(00)00395-2
 
Rodríguez V.M., Soengas P., Alonso-Villaverde V., Sotelo T., Cartea M.E., Velasco P. (2015): Effect of temperature stress on the early vegetative development of Brassica oleracea L. https://doi.org/10.1186/s12870-015-0535-0
 
BMC Plant Biology, 15:145.
 
Ruelland E., Collin S. (2012): Chilling stress. In: Shabala Ş. (ed.): Plant Stress Physiology. CAB International: 94–117.
 
Sharma P., Jha A.B., Dubey R.S., Pessarakli M. (2012): Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012: 217037.  https://doi.org/10.1155/2012/217037
 
Shen W., Nada K., Tachibana S. (1999): Effect of cold treatment on enzymic and nonenzymic antioxidant activities in leaves of chilling-tolerant and chilling-sensitive cucumber cultivars. Journal of the Japanese Society for Horticultural Science, 68: 967–973. https://doi.org/10.2503/jjshs.68.967
 
Sivaci A., Kaya A., Duman S. (2014): Effects of ascorbic acid on some physiological changes of pepino (Solanum muricatum Ait.) under chilling stress. Acta Biologica Hungarica, 65: 305–318. https://doi.org/10.1556/ABiol.65.2014.3.7
 
Suzuki N., Mittler R. (2006): Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiologia Plantarum, 126: 45–51. https://doi.org/10.1111/j.0031-9317.2005.00582.x
 
Szentmihályi K., Then M., Csedö C. (2004): Comparative study on tannins, flavonoids, terpenes and mineral elements of some Salvia species. Acta Horticulturae (ISHS), 629: 463–470. https://doi.org/10.17660/ActaHortic.2004.629.60
 
Wojdyło A., Oszmiański J., Czemerys R. (2007): Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105: 940–949. https://doi.org/10.1016/j.foodchem.2007.04.038
 
Xu S.-C., Li Y.-P., Hu J., Guan Y.-J., Ma W.-G., Zheng Y.-Y, Zhu S.-J. (2010): Responses of antioxidant enzymes to chilling stress in tobacco seedlings. Agricultural Sciences in China, 9: 1594–1601. https://doi.org/10.1016/S1671-2927(09)60256-X
 
You J., Chan Z. (2015): ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science, 6: 1092.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti