Abid M., Abid Ali Khan M.M. (2019): Medicinal plant: Environment interaction and mitigation to abiotic stres. In: Egamberdieva D., Tiezzi A. (eds): Medically Important Plant Biomes: Source of Secondary Metabolites. Singapore, Springer Nature Singapore Pte Ltd.: 21–50.
Aebi H. (1984): Catalase in vitro. Methods in Enzymology, 105: 121–126.
Afonso A.F., Pereira O.R., Fernandes Â., Calhelha R.C., Silva A.M.S., Ferreira I.C.F.R., Cardoso S.M. (2019): Phytochemical composition and bioactive effects of Salvia africana, Salvia officinalis ‘Icterina’ and Salvia mexicana aqueous extracts. Molecules, 24: 4327
https://doi.org/10.3390/molecules24234327
Bączek-Kwinta R., Serek B., Wątor A. (2007): Effect of chilling on total antioxidant capacity and growth processes of basil (Ocimum basilicum L.) cultivars. Herba Polonica, 53: 75–84.
Dhindsa R.S., Matowe W. (1981): Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation. Journal of Experimental Botany, 32: 79–91.
https://doi.org/10.1093/jxb/32.1.79
Caverzan A., Casassola A., Brammer S.P. (2016): Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. In: Shanker A. (ed.): Abiotic and Biotic Stress in Plants ‒ Recent Advances and Future Perspectives. London, UK, InTechOpen: 463–480.
Cuceu A.V.P., Tofană M., Socaci S.A., Nagy M., Borș M.-D., Salanță L., Vlaic R. (2015): Studies on total polyphenols content and antioxidant activity of methanolic extracts from selected Salvia species. Bulletin UASVM Food Science and Technology, 72: 86–90.
Cuvelier M.E., Richard H., Berset C. (1996): Antioxidative activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. Journal of the American Oil Chemists’ Society, 73: 645.
https://doi.org/10.1007/BF02518121
Djeridane A., Yousfi M., Nadjemi B., Boutassouna D., Stocker P., Vidal N. (2006): Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compound. Food Chemistry, 97: 654–660.
https://doi.org/10.1016/j.foodchem.2005.04.028
Gill S.S., Tuteja N. (2010): Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48: 909–930.
https://doi.org/10.1016/j.plaphy.2010.08.016
Guo W.L., Chen R.G., Gong Z.H., Yin Y.X., Ahmed S.S., He Y.N. (2012): Exogenous abscisic acid increases antioxidant enzymes and related gene expression in pepper (Capsicum annuum) leaves subjected to chilling stress. Genetics and Molecular Research, 11: 4063–4080.
https://doi.org/10.4238/2012.September.10.5
Guo Z., Ou W., Lu S., Zhong Q. (2006): Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiology and Biochemistry, 44: 828–836.
https://doi.org/10.1016/j.plaphy.2006.10.024
Hasanuzzaman M, Borhannuddin Bhuyan MHM, Anee TI, Parvin K, Nahar K, Al Mahmud J, Fujita M. (2019): Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants, 8: 384.
https://doi.org/10.3390/antiox8090384
Kalisz A., Pokluda R., Jezdinský A., Sękara A., Grabowska A., Gil J., Neugebauerová J. (2016): Chilling-induced changes in the antioxidant status of basil plants. Acta Physiologiae Plantarum, 38: 196.
https://doi.org/10.1007/s11738-016-2214-7
Kanase T., Guhey A., Gawas D. (2019): Activity of antioxidant enzymes in soybean genotypes under drought stress. nternational Journal of Current Microbiology and Applied Sciences, 8: 2323–2330.
https://doi.org/10.20546/ijcmas.2019.809.267
Kang H.-M., Saltveit M.E. (2002): Effect of chilling on antioxidant enzymes and DPPH-radical scavenging activity of high- and low-vigour cucumber seedling radicles. Plant, Cell & Environment, 25: 1233–1238.
Karpinsky S., Wingsle G., Karpinska B., Hällgren J.-E. (2002): Low temperature stress and antioxidant mechanisms to oxidative stress in plants. In: Inzé D., Van Montagu M. (eds): Oxidative Stress in Plants. London, UK, Taylor & Francis: 85–128.
Karuppanapandian T., Moon J.-C., Kim C., Manoharan K., Kim W. (2011): Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science, 5: 709–725.
Kuk Y.I., Shin J.S., Burgos N.R., Hwang T.E., Han O., Cho B.H., Jung S., Guh J.O. (2003): Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Science, 43: 2109–2117.
https://doi.org/10.2135/cropsci2003.2109
Kusvuran S., Kiran S., Ellialtioglu S.S. (2016): Antioxidant enzyme activities and abiotic stress tolerance relationship in vegetable crops. In: Shanker A. (ed.): Abiotic and Biotic Stress in Plants ‒ Recent Advances and Future Perspectives. London, UK, InTechOpen: 481–506.
Lakušić B.S., Ristić M.S., Slavkovska V.N., Stojanović D.L., Lakušić D.V. (2013): Variations in essential oil yields and compositions of Salvia officinalis (Lamiaceae) at different developmental stages. Botanica Serbica, 37: 127–139.
Lee D.H., Lee C.B. (2000): Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Science, 159: 75–85.
https://doi.org/10.1016/S0168-9452(00)00326-5
Lee J.-H., Oh M.-M. (2015): Short-term low temperature increases phenolic antioxidant levels in kale. Horticulture, Environment, and Biotechnology, 56: 588–596.
https://doi.org/10.1007/s13580-015-0056-7
Lu J., Nawaz M.A., Wei N., Cheng F., Bie Z. (2020): Suboptimal temperature acclimation enhances chilling tolerance by improving photosynthetic adaptability and osmoregulation ability in watermelon. Horticultural Plant Journal, 6: 49–60.
https://doi.org/10.1016/j.hpj.2020.01.001
Lu Y., Foo L.Y. (2002): Polyphenolics of Salvia – a review. Phytochemistry, 59, 117–140.
https://doi.org/10.1016/S0031-9422(01)00415-0
Lück H. (1962): Peroxidase. In: Bergmeyer H.U. (ed.): Methoden der enzymatischen analyse. Weinheim, Germany, Verlag Chemie GmbH: 895–897.
Molyneux P. (2004): The use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Techno-logy, 26: 211–219.
Naikoo M.I., Dar M.I., Raghib F., Jaleel H., Ahmad B., Raina A., Khan F.A., Naushin F. (2019): Role and regulation of plants phenolics in abiotic stress tolerance: An overview. In: Khan M.I.R., Reddy P.S., Ferrante A., Khan N.A. (eds): Plant Signaling Molecules, Role and Regulation Under Stressful Environments. Elsevier: 157–168.
Oh M.M., Carey E.E., Rajashekar C.B. (2009): Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiology and Biochemistry, 47: 578–583.
https://doi.org/10.1016/j.plaphy.2009.02.008
Pijanowski E., Mrożewski S., Horubała A. (1964): Technologia produktów owocowych i warzywnych [Technology of Fruit and Vegetable Products]. Warszawa, Poland, PWRiL.
Pohl A., Komorowska M., Kalisz A., Sękara A. (2019): Eggplant seedlings modify antioxidant system during acclima-tion to low temperature. Agrochimica, 62: 151–167.
Posmyk M.M., Bailly Ch., Szafrańska K., Janas K.M., Corbineau F. (2005): Antioxidant enzymes and isoflavonoids in chilled soybean (Glycine max (L.) Merr.) seedlings. Journal of Plant Physiology, 162: 403–412.
https://doi.org/10.1016/j.jplph.2004.08.004
Poulios E., Giaginis C., Vasios G.K. (2020): Current state of the art on the antioxidant activity of sage (Salvia spp.) and its bioactive components. Planta Medica, 86: 224–238.
https://doi.org/10.1055/a-1087-8276
Rezaie R., Mandoulakani B.A., Fattahi M. (2020): Cold stress changes antioxidant defense system, phenylpropanoid contents and expression of genes involved in their biosynthesis in Ocimum basilicum L. Scientific Reports, 10: 5290.
https://doi.org/10.1038/s41598-020-62090-z
Rivero R.M., Ruiz J.M., García P.C., López-Lefebre L.R., Sánchez E., Romero R. (2001): Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Science, 160: 315–321.
https://doi.org/10.1016/S0168-9452(00)00395-2
Rodríguez V.M., Soengas P., Alonso-Villaverde V., Sotelo T., Cartea M.E., Velasco P. (2015): Effect of temperature stress on the early vegetative development of Brassica oleracea L.
https://doi.org/10.1186/s12870-015-0535-0
BMC Plant Biology, 15:145.
Ruelland E., Collin S. (2012): Chilling stress. In: Shabala Ş. (ed.): Plant Stress Physiology. CAB International: 94–117.
Sharma P., Jha A.B., Dubey R.S., Pessarakli M. (2012): Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012: 217037.
https://doi.org/10.1155/2012/217037
Shen W., Nada K., Tachibana S. (1999): Effect of cold treatment on enzymic and nonenzymic antioxidant activities in leaves of chilling-tolerant and chilling-sensitive cucumber cultivars. Journal of the Japanese Society for Horticultural Science, 68: 967–973.
https://doi.org/10.2503/jjshs.68.967
Sivaci A., Kaya A., Duman S. (2014): Effects of ascorbic acid on some physiological changes of pepino (Solanum muricatum Ait.) under chilling stress. Acta Biologica Hungarica, 65: 305–318.
https://doi.org/10.1556/ABiol.65.2014.3.7
Suzuki N., Mittler R. (2006): Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiologia Plantarum, 126: 45–51.
https://doi.org/10.1111/j.0031-9317.2005.00582.x
Szentmihályi K., Then M., Csedö C. (2004): Comparative study on tannins, flavonoids, terpenes and mineral elements of some Salvia species. Acta Horticulturae (ISHS), 629: 463–470.
https://doi.org/10.17660/ActaHortic.2004.629.60
Wojdyło A., Oszmiański J., Czemerys R. (2007): Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105: 940–949.
https://doi.org/10.1016/j.foodchem.2007.04.038
Xu S.-C., Li Y.-P., Hu J., Guan Y.-J., Ma W.-G., Zheng Y.-Y, Zhu S.-J. (2010): Responses of antioxidant enzymes to chilling stress in tobacco seedlings. Agricultural Sciences in China, 9: 1594–1601.
https://doi.org/10.1016/S1671-2927(09)60256-X
You J., Chan Z. (2015): ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science, 6: 1092.