The effect of preharvest 28.6% chitosan composite film sprays for controlling the soft rot on kiwifruit

https://doi.org/10.17221/84/2018-HORTSCICitation:Zhang C., Long Y., Wang Q., Li J., Wu X., Li M. (2019): The effect of preharvest 28.6% chitosan composite film sprays for controlling the soft rot on kiwifruit. Hort. Sci. (Prague), 46: 180-194.
download PDF

This study evaluated the effects of preharvest plant 28.6% chitosan composite film (CTS-Fh) sprays on the postharvest quality and diseases in kiwifruit (Actinidia deliciosa cv. ‘Guichang’), it was screened and prepared by mixing chitosan, calcium, dextrin, ferulic acid and auxiliaries. 28.6% CTS-Fh solutions at different concentrations were sprayed three times during the fruit growing season. The obtained results show that 28.6% CTS-Fh sprays remarkably promoted the improvement of the yield and quality of the kiwifruit, significantly (P < 0.05) increased the Ca content and firmness, delayed the fruit ripening and softening, and enhanced the storability. Moreover, the kiwifruit soft rot was effectively controlled; the control efficiency was 61.68–88.79%. Additionally, the 28.6% CTS-Fh sprays significantly (P < 0.05) increased the content and activity of some defence-related secondary metabolites and enzymes, and could also increase the cell wall compactness in the kiwifruit. These results suggest that 28.6% CTS-Fh might trigger several defence responses in the kiwifruit against pathogenic infections. The doses of 28.6% CTS-Fh 200–400 dilution times were recommended for the practical application with regards to the production of kiwifruit.

References:
Bardas G.A., Veloukas T., Koutita O., Karaoglanidis G.S. (2010): Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups. Pest Management Science, 66: 967–973. https://doi.org/10.1002/ps.1968
 
Boonlertnirun S., Suvannasara R., Promsomboon P., Boonlertnirun K. (2012): Chitosan in combination with chemical fertilizer on agronomic traits and some physiological responses relating to yield potential of rice (Oryza sativa L.). Brazilian Journal of Medical and Biological Research, 7: 64–68.
 
Chen H.Z., Cheng Z., Michael W., Liu Y.S., Liu J. (2015): Ecofriendly hot water treatment reduces postharvest decay and elicits defense response in kiwifruit. Environmental Science and Pollution Research, 22: 15037–15045. https://doi.org/10.1007/s11356-015-4714-1
 
Chen Y.P. (2008): Isatis indigotica seedlings derived from laser stimulated seeds showed improved resistance to elevated UV-B. Plant Growth Regulation, 55: 73–79. https://doi.org/10.1007/s10725-008-9258-7
 
Dewanto V., Wu X.Z., Adom K.K., Liu R.H. (2002): Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50: 3010–3014. https://doi.org/10.1021/jf0115589
 
Ding Z.S., Tian S.P., Zheng X.L., Zhou Z.W., Xu Y. (2007): Responses of reactive oxygen metabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress. Physiologia Plantarum, 130, 112–121. https://doi.org/10.1111/j.1399-3054.2007.00893.x
 
Fatemi H., Mohammadi S., Aminifard M.H. (2013): Effect of postharvest salicylic acid treatment on fungal decay and some postharvest quality factors of kiwi fruit. Arch Phytopathol Plant Protect, 46: 1338–1345. https://doi.org/10.1080/03235408.2013.767013
 
Garcia M.T., Ventosa A., Mellado E. (2005): Catabolic versatility of aromatic compound-degrading halophilic bacteria. Fems Microbial Ecology, 54: 97–109 https://doi.org/10.1016/j.femsec.2005.03.009
 
Guo J., Yue T.L., Li X.T., Yuan Y.H. (2016): Heavy metal levels in kiwifruit orchard soils and trees and its potential health risk assessment in Shaanxi, China. Environmental Science and Pollution Research, 23: 14560–14566. https://doi.org/10.1007/s11356-016-6620-6
 
Hengameh H., Mehdi B., (2009): Applications of biopolymers I: chitosan. Monatshefte Fur Chemie, 140: 1403–1420. https://doi.org/10.1007/s00706-009-0197-4
 
Kim, H.J., Chen, F., Wang, X., Rajapakse, N.C. (2005): Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry, 53: 3696–3701. https://doi.org/10.1021/jf0480804
 
Kou X.H., Guo W.L., Guo R.Z., Li X.Y., Xue Z.H. (2014): Effects of chitosan, calcium chloride, and pullulan coating treatments on antioxidant activity in pear cv. “Huang guan” during storage. Food Bioprocess Technology, 7: 671–681. https://doi.org/10.1007/s11947-013-1085-9
 
Landman E.P., Fock W.W. (2006): Stearate intercalated layered double hydroxides: effect on the physical properties of dextrin-alginate films. Journal of Materials Science, 44: 2271–2279. https://doi.org/10.1007/s10853-006-7173-8
 
Li. B., Liu B.P., Shan C.L., Ibrahim M., Lou Y.H., Wang Y.L., Xie G.L., Li. H.Y., Sun G.C. (2013): Antibacterial activity of two chitosan solutions and their effect on rice bacterial leaf blight and leaf streak. Pest Management Science, 69: 312–320. https://doi.org/10.1002/ps.3399
 
Liu H., Tian W.X., Li B., Wu G.X., Ibrahim M., Tao Z.Y., Wang Y.L., Xie G.L., Li H.Y., Sun G.C. (2012): Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnology Letters, 34: 2291–2298. https://doi.org/10.1007/s10529-012-1035-z
 
Liu J., Tian S. P., Meng X.H., Xu Y. (2007): Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Biology and Technology, 44: 300–306. https://doi.org/10.1016/j.postharvbio.2006.12.019
 
Luongo L., Santori A., Riccioni L., Belisario A. (2011): Phomopsis sp. associated with post-harvest fruit rot of kiwifruit in Italy. Journal of Plant Pathology, 93: 205-209.
 
Ma Z.X., Yang L.Y., Yan H.X., Kennedy J.F., Meng X.H. (2013): Chitosan and oligochitosan enhance the resistance of peach fruit to brown rot. Carbohydrate polymers, 94: 272–277. https://doi.org/10.1016/j.carbpol.2013.01.012
 
Meng H., Li B., Liu J., Tian S.P. (2008): Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chemistry, 106: 501–508. https://doi.org/10.1016/j.foodchem.2007.06.012
 
Meng X.H., Yang L.Y., Kennedy J.F., Tian S.P. (2010): Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate polymers, 81: 70–75. https://doi.org/10.1016/j.carbpol.2010.01.057
 
Milosevic N., Slusarenko A.J. (1996): Active oxygen metabolism and lignification in the hypersensitive response in bean. Physiological and Molecular Plant Pathology, 49: 143–158. https://doi.org/10.1006/pmpp.1996.0045
 
Mohammad Z.I., Mahmuda A.M., Jun P.B, Kang H.M. (2016): Cherry tomato qualities affected by foliar spraying with boron and calcium. Horticulture, Environment and Biotechnology, 57: 46–52. https://doi.org/10.1007/s13580-016-0097-6
 
Mondal M.M.A., Puteh A.B., Dafader N.C., Rafii M.Y., Malek M.A. (2013): Foliar application of chitosan improves growth and yield in maize. Journal of Food Agriculture and Environment, 11: 520–523.
 
Neslihan E., Funda Ö., Engin G. (2016): Effects of preharvest foliar calcium applications on the storage quality of ‘0900 Ziraat’ Sweet Cherry Cultivar. Erwerbs-Obstbau, 20: 1–5.
 
Petriccione M., De Sanctis F., Pasquariello M. S., Mastrobuoni F., Rega P., Scortichini M. (2015): The effect of chitosan coating on the quality and nutraceutical traits of sweet cherry during postharvest life. Food and Bioprocess Technology, 8: 394–408. https://doi.org/10.1007/s11947-014-1411-x
 
Rabea E.I., Steurbaut W. (2010): Chemically modified chitosans as antimicrobial agents against some plant pathogenic bacteria and fungi. Plant Protect Science, 4, 149–158. https://doi.org/10.17221/9/2009-PPS
 
Rajan A., Kurup J.G., Abraham T.E. (2005): Biosoftening of areca nut fiber for value added products. Biochemical Engineering Journal, 25: 237–242. https://doi.org/10.1016/j.bej.2005.05.011
 
Shukla S.K., Deshpande S.R., Shukla S.K., Tiwari A. (2012): Fabrication of a tunable glucose biosensor based on zinc oxide/chitosan-graft-poly (vinylalcohol) core-shell nanocomposite. Talanta, 99: 283–287. https://doi.org/10.1016/j.talanta.2012.05.052
 
Shukla S.K., Mishra A.K., Arotiba O.A., Mamba B.B. (2012): Chitosan-based nanomaterials: a state-of-the-art review. International journal of biological macromolecules, 59: 46–58. https://doi.org/10.1016/j.ijbiomac.2013.04.043
 
Shukla S.K., Shukla S.K., Govende P.P, Giri N.G. (2016): Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC Advances, 97: 94325–94351. https://doi.org/10.1039/C6RA15764E
 
Simsek A., Aykut O. (2007): Evaluation of the microelement profile of Turkish hazelnut (Corylus auellana L.) varieties for human nutrition and health. International Journal of Food Sciences and Nutrition, 58: 677–688. https://doi.org/10.1080/09637480701403202
 
Vander P., Varum K.M., Domard A., El-Gueddari N.E., Moerschbacher B.M. (1998): Comparison of the ability of partially Nacetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiology, 118: 1353–1359. https://doi.org/10.1104/pp.118.4.1353
 
William W.A., Samuel O.O., Sudheesh K.S., Eric S.A., Penny P.G. (2016): Chitosan–sodium alginate encapsulated Co-doped ZrO2–MWCNTs nanocomposites for photocatalytic decolorization of organic dyes. Research on Chemical Intermediates, 42: 7231–7245. https://doi.org/10.1007/s11164-016-2532-9
 
Yang D., Zhen Z., Zhao J.H., Nie Y., Zhang Y., Sheng J.P., Meng D.M., Mao H.M., Singleton V. L., Orthofer R., Lamuela-Raventos M. (1999): Analysis of total phenols and other oxidation substrates and antioxidants by means of Foline-Ciocalteu reagent. Methods in Enzymology, 299: 152–178.
 
Yang L., Zhao P., Wang L., Filippus I., Meng X. (2010): Synergistic effect of oligochitosan and silicon on inhibition of Monilinia fructicola infections. Journal of the Science of Food and Agriculture, 90: 630–634.
 
Yang L.Y., Zhang J.L., Bassett C.L., Meng X.H. (2012): Difference between chitosan and oligochitosan in growth of Monilinia fructicola and control of brown rot in peach fruit. Food Science and Technology, 46: 254–259.
 
Yan J.Q., Cao J.K., Jiang W.B., Zhao Y.M. (2012): Effects of preharvest oligochitosan sprays on postharvest fungal diseases, storage quality, and defense responses in jujube (Zizyphus jujuba Mill. cv. Dongzao) fruit. Scientia Horticulturae, 142: 196–204. https://doi.org/10.1016/j.scienta.2012.05.025
 
Yu T., Li H.Y.; Zhang, X.D. (2007): Synergistic effect of chitosan and Cryptococcus laurentii on inhibition of Penicillium expansum in fections. Inter. Journal of Food Microbiology, 114, 261–266. https://doi.org/10.1016/j.ijfoodmicro.2006.09.008
 
Zhang H., Li R., Liu W. (2011): Effects of chitin and its derivative chitosan on postharvest decay of fruits: a review. International Journal of Molecular Sciences, 12: 917–934. https://doi.org/10.3390/ijms12020917
 
Zhu Z., Zhang Z., Qin G., Tian S.P. (2010): Effects of brassinosteroids on postharvest disease and senescence of jujube fruit in storage. Postharvest Biology and Technology, 56: 50–55. https://doi.org/10.1016/j.postharvbio.2009.11.014
 
download PDF

© 2020 Czech Academy of Agricultural Sciences