Modelling the potential effects of climate change in the distribution of Xylotrechus arvicola in Spain

https://doi.org/10.17221/85/2019-HORTSCICitation:

Felicímo A.M., Armedáriz I., Alberdi V. (2021): Modelling the potential effects of climate change in the distribution of Xylotrechus arvicola in Spain. Hort. Sci. (Prague), 48: 38–46.

download PDF

Xylotrechus arvicola is an emerging grape pest that generates serious sanitary problems in vineyards and is currently expanding its range throughout Spain. The increasing prevalence of this pest in Spanish vineyards has been detected since 1990. In this study, the relationship between the climate and the actual distribution of the beetle was analysed, as well as how this distribution might change in the future according to several climate change models. The methodology was based on predictive models (SDM; species distribution modelling) using climate variables as explanatory factors, although the relationships were not necessarily causal. Maxent was used as the SDM method. The current climatic niche was calculated, and the actual potential distribution area was estimated. The relationships between the climate variables and the species probability of the presence were projected to various future climate change scenarios. The main conclusions reached were that climate change will favour the expansion of X. arvicola and that the potential infestation zones will be extended significantly. Although the results, because they were based on hypothetical climate frameworks that are under constant revision, were not conclusive, they should be taken into consideration when defining future strategies in the wine industry.

References:
Armendáriz I., Juárez J. S., Campillo G., Miranda I., Pérez-Sanz A. (2008):. Daños mecánicos producidos por „Xylotrechus arvicola“ (Olivier 1795) (Coleoptera.Cerambycidae). Boletín de Sanidad Vegetal Plagas, 34: 477–483.
 
Attorre F., Alfo M., De Sanctis M., Bruno F. (2007): Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. International Journal of Climatology, 27: 1825–1843.  https://doi.org/10.1002/joc.1495
 
Boer E.P. J., de Beurs K.M., Hartkamp A.D. (2001): Kriging and thin plate splines for mapping climate variables. International Journal of Applied Earth Observation and Geoinformation, 3: 146–154.  https://doi.org/10.1016/S0303-2434(01)85006-6
 
Booth H., Nix A., Busby J., Hutchinson M. (2014): Bioclim: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Conservation Biogeography, 20: 1–9.
 
Calleja A. (2007): Seguimiento del ciclo biológico de Xylotrechus arvicola por serrado de cepas. Tierras de Castilla y León, Agricultura, 136: 72–76.
 
Dobrowski S.Z. (2011): A climatic basis for mocrorefugia: The influence of terrain on climate. Global Change Biology, 17: 1022–1035.  https://doi.org/10.1111/j.1365-2486.2010.02263.x
 
Duque-Lazo J., Navarro-Cerrillo R.M. (2017): What to save, the host or the pest? The spatial distribution of xylophage insects within the Mediterranean oak woodlands of Southwestern Spain. Forest Ecology and Management, 392: 90–104. https://doi.org/10.1016/j.foreco.2017.02.047
 
Duque-Lazo J., Navarro-Cerrillo R.M., Van Gils H., Groen T. (2018): Forecasting oak decline caused by Phytophthora cinnamomi in Andalusia: Identification of priority areas for intervention. Forest Ecology and Managemen, 417: 122–136. https://doi.org/10.1016/j.foreco.2018.02.045
 
Efron B., Gong G. (1983): A Leisurely look at the bootstrap, the jackknife and cross-validation. American Statistical Association, 37: 36–48.
 
Elith J., Graham C.H., Anderson R.P., Dudík M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J. R., Lehmann A., Li J., Lohmann L.G., Loiselle B.A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J.M., Peterson A. T., Phillips S.J., Richardson K., Scachetti-Pereira R., Schapire R. E., Soberón J., Williams S., Wisz M.S., Zimmermann N.E. (2006): Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29: 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
 
EVENA (2005): Recomendación de prácticas culturales. Navarra, Estación de Viticultura y Enología de Navarra.
 
Felicísimo A., Cuartero A., Remondo J., Quirós E. (2013): Mapping landslide susceptibility with logistic regression, multiple adaptative regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Journal Landslides, 10: 175–189. https://doi.org/10.1007/s10346-012-0320-1
 
Felicísimo A., Muñoz J., Villalba-Alonso C.J., Mateo R. (2011): Impactos, vulnerabilidad y adaptación al cambio climático de la biodiversidad española. 1. Flora y Vegetación. Ministerio de Medio Ambiente y Mediio Rural y Marino.
 
Fielding A.H., Bell J.F. (1997): A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24: 38–49. https://doi.org/10.1017/S0376892997000088
 
García-Ruíz E., Marco V., Pérez-Moreno I. (2011): Effects of Variable and Constant Temperatures on the Embryonic Development and Survival of a New Grape Pest, Xylotrechus arvicola (Coleoptera: Cerambycidae). Environmental Entomology, 40: 939–947. https://doi.org/10.1603/EN11080
 
Gregorová B., Černý K., Holub V., Strnadová V. (2010): Effects of climatic factors and air pollution on damage of London plane (Platanushispanica Mill.). Horticultural Science, 37: 109–117. https://doi.org/10.17221/47/2009-HORTSCI
 
Guisan A., Zimmermann N.E. (2000): Predictive habitat distribution models in ecology. Ecological Modelling, 135: 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9
 
Hanley J.A., McNeil B.J., (1983): A method of comparing the areas under Receiver Operating Characteristic curves derived from the same cases. Radiology, 148: 839–843. https://doi.org/10.1148/radiology.148.3.6878708
 
Hao T., Elith J., Lahoz-Monfort J.J., Guillera-Arroita G. (2020): Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography, 43: 549–558. https://doi.org/10.1111/ecog.04890
 
Leathwick J.R., Elith J., Hastie T. (2006): Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecological Modelling, 199: 188–196. https://doi.org/10.1016/j.ecolmodel.2006.05.022
 
Mateo R., Felicísimo A., Muñoz J., (2012). Modelos de distribución de especiesy su potencialidad como recurso educativo interdisciplinar. Reduca. Serie Ecología, 5: 137–153.
 
McFarlane N.A., Boer G.J., Blanchet J.P., Lazare M. (1992): The Canadian Climate Centre second-generation general circulation model and its equilibrium climate. Journal of Climate. American Meteorological Society, 5: 10.  https://doi.org/10.1175/1520-0442(1992)005<1013:TCCCSG>2.0.CO;2
 
Merow C., Smith M.J., Silander J.A. (2013): A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36: 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
 
Morata A. (2014): Guía de escenarios regionalizados de cambio climático sobre España a partir de los resultados del IPCC-AR4. Agencia Estatal de Meteorología. Ministerio de Agricultura, Alimentacion y Medio Ambiente. Madrid.
 
Moreno C.M., Martín M.C., Santiago Y., De Evan E., Hernández J.M., Peláez H. (2004): Presencia de Xylotrechus arvícola (Olivier, 1795) (Coleoptera.Cerambycidae) en viñedos de la zona centro de Castilla y León. Boletín de Sanidad Vegetal Plagas, 30: 475–486.
 
Moreno C. (2005): Xylotrechus arvicola (Olivier 1795) (Coleóptera.Cerambycidae). descripción morfológica, ciclo biológico, incidencia y daños en el cultivo de la vid. ETSI Agrónomos. Madrid, Universidad Politécnica de Madrid.
 
Muñoz J., Felicísimo A.M. (2004): A comparison between some statistical methods commonly used in predictive modeling. Journal of Vegetation Science, 15: 285–292. https://doi.org/10.1111/j.1654-1103.2004.tb02263.x
 
Nakicenovic N., Alcamo J., Davis G., De Vries B. (2000): Special report on Emissions Scenarios: a special report of the Working Group III of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change.
 
Navarro-Cerrillo R., Rebollo P.F., Trapero A., Caetano P., Romero M., Sánchez M., Rancio A.F., Sánchez I., Pantoja G.L. (2004): Los procesos de decaimiento deencinas y alcornoques. Dirección General de Gestión del Medio Natural. Consejería de Medio Ambiente, Junta de Andalucía. Sevilla: 32.
 
Ocete M.E., López M.A., Gallardo A., Pérez M.A., Rubio I.M., (2004): Efecto de los daños de Xylotrechus arvicola (Olivier) (Coleoptera, Cerambycidae) sobre las características de los racimos de la variedad de vid Tempranillo en La Rioja. Boletín de Sanidad Vegetal Plagas, 30: 311–316.
 
Ocete R., Del Tío R. (1996): Presencia del perforador Xylotrechus arvicola (Olivier) (Coleoptera, Cerambycidae) en viñedos de la Rioja Alta. Boletín de Sanidad Vegetal Plagas, 22: 199–202.
 
Ocete R., López M.A.,Prendes C., Lorenzo C.D., González-Andújar J.L., Lara M. (2002): Xylotrechus arvicola (Olivier) (Coleoptera, Cerambycidae), a new impacting pest on Spanish vineyards. Vitis, 41: 211–212.
 
Ocete R., Salinas J. A., Soria F. J., Lara M., García D., Maistrello L., Ocete M. E., López M. A. (2009). Consecuencias de la infestación del tornillo, Xylotrechus arvicola (Olivier) (Coleoptera, Cerambycidae), sobre el rendimiento y características enológicas de la variedad Tempranillo y relación de leñosas infestadas en La Rioja Alta. Boletín de Sanidad Vegetal Plagas, 35: 3–13.
 
Peláez H.J., Maraña R., Urbez J.R., Barrigón J.M. (2001): Xylotrechus arvicola (Ol., 1795) presencia en los viñedos de Castilla y León. Cáceres, Spain: 1326–1331.
 
Phillips S.J., Dudík M. (2008): Modeling of species distributions with Maxent. new extensions and a comprehensive evaluation. Ecography, 31:161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
 
Phillips S.J., Dudík M., Elith J.,Graham C.H., Lehmann A., Leathwick J., Ferrier S. (2009): Sample selection bias and presence-only distribution models. implications for background and pseudo-absence data. Ecological Applications, 19: 181–197. https://doi.org/10.1890/07-2153.1
 
Phillips S.J., Anderson R.P., Schapire R.P. (2006): Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
 
Rodríguez M., Ocaña P. J., Oliver M. (1997): Presencia del perforador Xylotrechus arvicola Olivier en viñas de la provincia de Ciudad Real – 1996. XXII Reunión del Grupo de Trabajo de los Problemas Fitosanitarios de la Vid. Ciudad Real.
 
Rodríguez-González A., Peláez H. J., Mayo S., González-López O., Casquero P.A. (2016): Egg development and toxicity of insecticides to eggs, neonate larvae and adults of Xylotrechus arvicola, a pest in Iberian grapevines. Vitis, 55, 83–93.
 
Roeckner E. (1996): The  atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Report 218, Max-Planck-Institut für Mete-orologie, Hamburg.
 
Seo C., Thorne J., Hannah L., Thuiller W. (2008): Scale effects in species distribution models: implications for conservation planning under climate change. Conservation biology, 5: 1.
 
Soria F.J., López M.A., Pérez M.A., Maistrello L., Armendáriz I., Ocete R. (2013): Predictive model for the emergence of Xylotrechus arvicola (Coleoptera: Cerambycidae) in La Rioja vineyards (Spain). Vitis, 52: 91–96.
 
Villiers A. (1978): Encyclopédieentomologique – Faune des Coléoptères de France, Paris, France, Lechevalier.
 
Vives E. (2000): Coleoptera.Cerambycidae, Madrid, Consejo Superior de Investigaciones Científicas.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti