Nitrate/ammonium ratio effect on the growth, yield and foliar anatomy of grafted tomato plants

https://doi.org/10.17221/99/2020-HORTSCICitation:

Hernández A., García J.C., Robledo V., Méndez A., Sandoval A., Camposeco N. (2021): Nitrate/ammonium ratio effect on the growth, yield and foliar anatomy of grafted tomato plants. Hort. Sci. (Prague), 48: 80–89. 

download PDF

The vigorous behaviour of a rootstock modifies the growth and yield of a plant variety or hybrid, altering the plant nutritional requirements. The purpose of this work was to study four ratios of NO3–/NH4+ (100/0, 92/8, 85/15 and 80/20%) over the growth, leaf anatomy and yield of grafted and ungrafted tomato plants. We used a fully randomised experimental block design with factorial arrangement of 2 × 4 (grafted and ungrafted plants and four ratios of NO3–/NH4+), on eight treatments in total with four replicates each, using Tukey’s mean comparison test (P ≤ 0.05). The rootstock was ‘Silex’ by Fito Seeds, with the ‘El Arrojado’ graft (variety) by Gene Seeds. The graft produced an increase in growth, dry biomass production, stomatal density, trichome number, epidermal cell density, fruits per plant, average fruit weight, fruit size and total soluble solids, in comparison with the ungrafted tomato plants. In most of the assessed variables, the grafted tomato plants gave their best response at an 85/15% NO3–/NH4+ ratio; while the ungrafted plants performed better at a 92/8% NO3–/NH4+ ratio. The response of the grafted plants to the different NO3–/NH4+ ratios suggests that grafting induces tolerance to NH4+.

References:
Al-Harbi A., Hejazi A., Al-Omran A. (2017): Responses of grafted tomato (Solanum lycopersiocon L.) to abiotic stresses in Saudi Arabia. Saudi Journal of Biological Sciences, 24: 1274–1280.  https://doi.org/10.1016/j.sjbs.2016.01.005
 
Anjum N. A., Gill S. S., Umar S., Ahmad I., Duarte A. C., Pereira E. (2012): Improving growth and productivity of Oleiferous Brassicas under changing environment: significance of nitrogen and sulphur nutrition, and underlying mechanisms. The Scientific World Journal, 2012;2012:  657808.  https://doi.org/10.1100/2012/657808
 
Ayala A.J., Barrientos P.A.F., Colinas L.M.T., Sahagún C.J., Reyes A.J.C. (2010): Scion–interstock relationships and anatomical and physiological leaf characteristics of four avocado genotypes. Journal Chapingo. Horticulture Series, 16: 147–154. (in Spanish).
 
Borgognone D., Colla G., Rouphael Y., Cardarelli M., Rea E., Schwarz D. (2013): Effect of nitrogen form and nutrient solution pH on growth and mineral composition of self-grafted and grafted tomatoes. Scientia Horticulturae, 149: 61–69.  https://doi.org/10.1016/j.scienta.2012.02.012
 
Bosabalidis A.M., Kofidis G. (2002): Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science, 163: 375–379.  https://doi.org/10.1016/S0168-9452(02)00135-8
 
Britto D. T., Kronzucker J. (2002): NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology, 159: 567–584.  https://doi.org/10.1078/0176-1617-0774
 
Bugarín R., Baca G.A., Martínez J., Tirado J.L. (1998): Ammonium/nitrate ratio and total ion concentration in the nutrient solution on chrysanthemum growth. I. Growth and flowering. Terra Latinoamericana, 16: 113–124. (in Spanish).
 
Camposeco M.N., Robledo T.V., Ramírez G.F., Valdez A.L.A., Cabrera De la F.M., Mendoza V.R. (2018): Effect of the rootstock on the stomatal index and density of bell pepper Capsicum annuum var. annuum. Ecosystems and Agricultural Resources, 5: 555–561. (in Spanish). https://doi.org/10.19136/era.a5n15.1539
 
Colla G., Rouphael Y., Cardarelli M., Salerno A., Rea E. (2010): The effectiveness of grafting to improve alkalinity tolerance in watermelon. Environmental and Experimental Botany, 68: 283–291. https://doi.org/10.1016/j.envexpbot.2009.12.005
 
Davis A.R., Perkins V.P., Sakata Y., López G.S., Morat J.V., Lee S.G., Huh Y.C., Sun Z., Miguel A., King S., Cohen R., Lee J.M. (2008): Cucurbit grafting. Critical Reviews in Plant Sciences, 27: 50–74.  https://doi.org/10.1080/07352680802053940
 
Di Gioia F., Serio F., Buttaro D., Ayala O., Santamaria P. (2010): Influence of rootstock on vegetative growth, fruit yield and quality in ‘Cuore di Bue’, an heirloom tomato. The Journal of Horticultural Science and Biotechnology, 85: 477–482.  https://doi.org/10.1080/14620316.2010.11512701
 
Fernández G.N., Martínez V., Cerdá A., Carvajal M. (2004): Fruit quality of grafted tomato plants grown under saline conditions. The Journal of Horticultural Science and Biotechnology, 79: 995–1001. https://doi.org/10.1080/14620316.2004.11511880
 
Flores F.B., Sanchez B.P., Estañ M.T., Martinez M.M., Moyano E., Morales B., Campos J.F., Garcia J.O., Egea M.I., Fernández N., Romojaro F., Bolarín M.C. (2010): The effectiveness of grafting to improve tomato fruit quality. Scientia Horticulturae, 125: 211–217.  https://doi.org/10.1016/j.scienta.2010.03.026
 
González G.H., Ramírez G.F., Ortega O.H., Benavides M.A., Robledo T.V., Cabrera De la F.M. (2017): Use of chitosan-PVA hydrogels with copper nanoparticles to improve the growth of grafted watermelon. Molecules, 22: 1031.  https://doi.org/10.3390/molecules22071031
 
Hernández P.A., Villegas T.O.G., Valdez A.L.A., Alia T.I., López M.V., Domínguez P.M.L. (2015): Tolerance of lisianthus (Eustoma grandiflorum (Raf.) Shinn) to high ammonium concentrations in nutrient solution. Mexican Journal of Agricultural Sciences, 6: 467–482. (in Spanish).
 
Hetherington A.M., Woodward F.I. (2003): The role of stomata in sensing and driving environmental change. Nature, 424: 901–908.  https://doi.org/10.1038/nature01843
 
Huang W., Liao S., Lv H., Khaldun A.B.M., Wang Y. (2015): Characterization of the growth and fruit quality of tomato grafted on a woody medicinal plant, Lycium chinense. Scientia Horticulturae, 197: 447–453.  https://doi.org/10.1016/j.scienta.2015.10.005
 
Kronzucker H.J., Britto D.T., Davenport R.J., Tester M. (2001): Ammonium toxicity and the real cost of transport. Trends in Plant Science, 6: 335–337.  https://doi.org/10.1016/S1360-1385(01)02022-2
 
Liu G., Du Q., Li J. (2017): Interactive effects of nitrate-ammonium ratios and temperatures on growth, photosynthesis, and nitrogen metabolism of tomato seedlings. Scientia Horticulturae, 214: 41–50.  https://doi.org/10.1016/j.scienta.2016.09.006
 
Marschner H. (1995): Mineral nutrition of higher plants. London, Academic Press.
 
Martínez B.M.C., Muries B., Mota C., Carvajal M. (2010): Physiological aspects of rootstock–scion interactions. Scientia Horticulturae, 127: 112–118.  https://doi.org/10.1016/j.scienta.2010.08.002
 
Mascorro A.G., Arellano J.D.J.E., Sánchez D.G.R., Juárez I.R., Medinaveitia R.G.C., Flores R.R. (2012): Grafted tomato plant under greenhouse conditions: Yield and fruit quality. Agrofaz: Semi-Annual Scientific Research Publication, 12: 31–38.
 
Mohsenian Y., Roosta H.R. (2015): Effects of grafting on alkali stress in tomato plants: datura rootstock improve alkalinity tolerance of tomato plants. Journal of Plant Nutrition, 38: 51–72.  https://doi.org/10.1080/01904167.2014.920370
 
Orsini F., Accorsi M., Gianquinto G., Dinelli G., Antognoni F., Carrasco K.B.R., Martinez E.A., Alnayef M., Marotti I., Bosi S., Biondi S. (2011): Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Functional Plant Biology, 38: 818–831.  https://doi.org/10.1071/FP11088
 
Orsini F., Sanoubar R., Oztekin G. B., Kappel N., Tepecik M., Quacquarelli C., Tuzel Y., Bona S., Gianquinto G. (2013): Improved stomatal regulation and ion partitioning boosts salt tolerance in grafted melon. Functional Plant Biology, 40: 628–636.  https://doi.org/10.1071/FP12350
 
Passam H.C., Stylianou M., Kotsiras A. (2005): Performance of eggplant grafted on tomato and eggplant rootstocks. European Journal of Horticultural Science, 70: 130–134.
 
Rahmatian A., Delshad M., Salehi R. (2014). Effect of grafting on growth, yield and fruit quality of single and double stemmed tomato plants grown hydroponically. Horticulture, Environment, and Biotechnology, 55: 115–119.  https://doi.org/10.1007/s13580-014-0167-6
 
Rouphael Y., Cardarelli M., Colla G., Rea E. (2008a): Yield mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience, 43: 730–736.  https://doi.org/10.21273/HORTSCI.43.3.730
 
Rouphael Y., Cardarelli M., Rea E., Colla G. (2008b): Grafting of cucumber as a means to minimize copper toxicity. Environmental and Experimental Botany, 63: 49–58.  https://doi.org/10.1016/j.envexpbot.2007.10.015
 
Salas J., Sanabria M., Pire R. (2001): Modification of stomatal index and density in tomato plants (Lycopersicon esculentum Mill.) submitted to saline treatments. Bioagro, 13: 99–104.
 
Sam O., Jeréz E., Dell’Amico J., Ruiz S. M.C. (2000): Water stress induced changes in anatomy of tomato leaf epidermes. Biologia Plantarum, 43: 275–277.  https://doi.org/10.1023/A:1002716629802
 
Sánchez R.E., Romero L., Ruiz J.M. (2013): Role of grafting in resistance to water stress in tomato plants: ammonia production and assimilation. Journal of Plant Growth Regulation, 32: 831–842.  https://doi.org/10.1007/s00344-013-9348-2
 
Savvas D., Colla G., Rouphael Y., Schwarz D. (2010): Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Sientia Horticulturae, 127: 156–161.  https://doi.org/10.1016/j.scienta.2010.09.011
 
Siddiqi M.Y., Malhotra B., Min X., Glass A.D.M. (2002): Effects of ammonium and inorganic carbon enrichment on growth and yield of a hydroponic tomato crop. Journal of Plant Nutrition and Soil Science, 165: 191–197.  https://doi.org/10.1002/1522-2624(200204)165:2<191::AID-JPLN191>3.0.CO;2-D
 
Steiner A.A. (1961): A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil, 15: 134–154. https://doi.org/10.1007/BF01347224
 
Wiesler F. (1998): Agronomische und physiologische Aspekte der Ertragsbildung von Mais (Zea mays L.), Weizen (Triticum aestivum L.) und Lein (Linum usitatissimum L.) bei einem in Zeit und Form variierten Stickstoffangebot. Verlag U.E. Grauer, Stuttgart.
 
Zijlstra S., Groot S. P.C., Jansen J. (1994): Genotypic variation of rootstocks for growth and production in cucumber: possibilities for improving the root system by plant breeding. Scientia Horticulturae, 56: 185–196. https://doi.org/10.1016/0304-4238(94)90001-9
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti