Models for predicting aboveground biomass of European beech (Fagus sylvatica L.) in the Czech Republic V., Daniel Z., Tomáš Č., Vít Š. (2015): Models for predicting aboveground biomass of European beech (Fagus sylvatica L.) in the Czech Republic. J. For. Sci., 61: 45-54.
download PDF
We developed optimal models for predicting the aboveground biomass of European beech (Fagus sylvatica L.) applicable to the national forest inventory data of the Czech Republic. The models were based on a data set of 81 beech trees collected in 19 stands that represent a wide range of stand and site conditions. The relationship between biomass and tree dimensions (diameter D, height H) was modelled using non-linear regression equations with one (D) or two (D, H) independent variables and two or three parameters (D2, DH2, DH3 models). Subsequently additional predictor variables, i.e. tree age, site index and altitude, were added to the basic models. The inclusion of tree age (T) and altitude (A) in the basic DH2 model resulted in the best model for aboveground biomass (DH2AT model). The altitude (A) and site index (S) were important predictors for stem biomass estimate (DH3AS model). Similarly, branch biomass was predicted in the best way by four-variable model DH2AS.
Akselsson Cecilia, Westling Olle, Sverdrup Harald, Holmqvist Johan, Thelin Gunnar, Uggla Eva, Malm Gunnar (2007): Impact of Harvest Intensity on Long-Term Base Cation Budgets in Swedish Forest Soils. Water, Air, & Soil Pollution: Focus, 7, 201-210
Arlot Sylvain, Celisse Alain (2010): A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40-79
Albaugh T.J., Bergh J., Lundmark T., Nilsson U., Stape J., Allen H.L., Linder S. (2009): Do biological expansion factors adequately estimate stand-scale aboveground component biomass for Norway spruce? Forest Ecology and Management, 258: 2628–2637.
Augusto Laurent, Ranger Jacques, Ponette Quentin, Rapp Maurice (2000): Relationships between forest tree species, stand production and stand nutrient amount. Annals of Forest Science, 57, 313-324
Bollandsås Ole Martin, Rekstad Ingvild, Næsset Erik, Røsberg Ingvald (2009): Models for predicting above-ground biomass of Betula pubescens spp. czerepanóvii in mountain areas of southern Norway. Scandinavian Journal of Forest Research, 24, 318-332
Cienciala E., Černý M., Apltauer J., Exnerová Z. (2005): Biomass functions applicable to European beech. Journal of Forest Science, 4: 147–154.
Cienciala E., Černý M., Tatarinov F., Apltauer J., Exnerová Z. (2006): Biomass functions applicable to Scots pine. Trees, 20, 483-495
Cienciala E., Apltauer J., Exnerová Z., Tatarinov F.A. (2008): Biomass functions applicable to oak trees grown in Central-European forestry. Journal of Forest Science, 54: 109–120.
von Droste zu Hülshoff B. (1970): Struktur, Biomasse und Zuwachs eines älteren Fichtenbestandes. Forstwissenschaftliches Centralblatt, 89, 162-171
Freppaz Davide, Minciardi Riccardo, Robba Michela, Rovatti Mauro, Sacile Roberto, Taramasso Angela (2004): Optimizing forest biomass exploitation for energy supply at a regional level. Biomass and Bioenergy, 26, 15-25
Gschwantner T., Schadauer K. (2006): Branch biomass functions for broadleaved tree species in Austria. Austrian Journal of Forest Science, 123/1–2:17–33.
Hochbichler E., Bellos P., Lick E. (2006): Biomass functions for estimating needle and branch biomass of spruce (Picea abies) and Scots pine (Pinus sylvestris) and branch biomass of beech (Fagus sylvatica) and oak (Quercus robur and petraea). Austrian Journal of Forest Science, 123: 35–46.
IPCC (2003): Good Practice Guidance For Land Use, Land-Use Change and Forestry. Available at (accessed Mar 22, 2014).
Jalkanen Anneli, Mäkipää Raisa, Ståhl Göran, Lehtonen Aleksi, Petersson Hans (2005): Estimation of the biomass stock of trees in Sweden: comparison of biomass equations and age-dependent biomass expansion factors. Annals of Forest Science, 62, 845-851
Jenkins J.C., Chojnacky D.C., Heath L.S., Birdsey R. (2003): National scale biomass estimators for United States tree species. Forest Science, 49: 12–35.
Joosten Rainer, Schumacher Jens, Wirth Christian, Schulte Andreas (2004): Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in western Germany. Forest Ecology and Management, 189, 87-96
Lambert M-C, Ung C-H, Raulier F (2005): Canadian national tree aboveground biomass equations. Canadian Journal of Forest Research, 35, 1996-2018
Levy P.E. (2004): Biomass expansion factors and root : shoot ratios for coniferous tree species in Great Britain. Forestry, 77, 421-430
Lehtonen A, Mäkipää R, Heikkinen J, Sievänen R, Liski J (2004): Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management, 188, 211-224
Lehtonen Aleksi, Cienciala Emil, Tatarinov Fedor, Mäkipää Raisa (2007): Uncertainty estimation of biomass expansion factors for Norway spruce in the Czech Republic. Annals of Forest Science, 64, 133-140
Muukkonen P. (2007): Generalized allometric volume and biomass equations for some tree species in Europe. European Journal of Forest Research, 126, 157-166
Neumann Markus, Jandl Robert (2005): Derivation of locally valid estimators of the aboveground biomass of Norway spruce. European Journal of Forest Research, 124, 125-131
Pajtík Jozef, Konôpka Bohdan, Lukac Martin (2008): Biomass functions and expansion factors in young Norway spruce (Picea abies [L.] Karst) trees. Forest Ecology and Management, 256, 1096-1103
Pajtík J., Konôpka B., Priwitzer T. (2011): Alokácia dendromasy v mladých porastoch buka obyčajného a duba zimného. Zprávy lesnického výzkumu, 56: 291–300.
Parresol B.R. (1999): Assessing tree and stand biomass: A review with examples and critical comparisons. Forest Science, 45: 573–593.
Petersson Hans, Holm Sören, Ståhl Göran, Alger David, Fridman Jonas, Lehtonen Aleksi, Lundström Anders, Mäkipää Raisa (2012): Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass – A comparative study. Forest Ecology and Management, 270, 78-84
Pretzsch H. (2000). Die Regeln von Reineke, Yoda und das Gesetz der räumlichen Allometrie. Allgemeine Forst- und Jagdzeitung, 171: 205–210.
R Core Team (2012): R: A language and environment for statistical computing. Available at
Repola Jaakko (2009): Biomass equations for Scots pine and Norway spruce in Finland. Silva Fennica, 43, -
Sakamoto, Y., Ishiguro, M., Kitagawa G. (1986): Akaike Information Criterion Statistics. D. Reidel Publishing Company.
Schutz J.-P. (2002): Silvicultural tools to develop irregular and diverse forest structures. Forestry, 75, 329-337
Skovsgaard Jens Peter, Nord-Larsen Thomas (2012): Biomass, basic density and biomass expansion factor functions for European beech (Fagus sylvatica L.) in Denmark. European Journal of Forest Research, 131, 1035-1053
Snowdon P. (1991): A ratio estimator for bias correction in logarithmic regressions. Canadian Journal of Forest Research, 21, 720-724
Somogyi Z., Cienciala E., Mäkipää R., Muukkonen P., Lehtonen A., Weiss P. (2007): Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research, 126, 197-207
Sprugel D. G. (1983): Correcting for Bias in Log-Transformed Allometric Equations. Ecology, 64, 209-
Šrámek V., Lomský B., Novotný R. (2009): Hodnocení obsahu a zásoby živin v lesních porostech – literární přehled. Zprávy lesnického výzkumu, 54: 307–315.
Tobin Brian, Nieuwenhuis Maarten (2007): Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong.) Carr.) in Ireland. European Journal of Forest Research, 126, 189-196
Teobaldelli Maurizio, Somogyi Zoltan, Migliavacca Mirco, Usoltsev Vladimir A. (2009): Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. Forest Ecology and Management, 257, 1004-1013
Vejpustková M., Čihák T., Zahradník D., Šrámek V. (2013): Metody stanovení nadzemní biomasy buku (Fagus sylvatica L.). Lesnický průvodce, 1/2013, VÚLHM: 28.
Vinš B., Šika A. (1977): Biomasa nadzemních a podzemních částí vzorníků smrku. Práce VÚLHM, 51: 125–150.
Vyskot M. (1980): Bilance biomasy hlavních lesních dřevin. Lesnictví, 26: 849–882.
Vyskot M. (1990): Juvenile Beech in Biomass. Prague, Academia: 167.
Wirth C., Schulze E.D., Schwalbe G., Tomczyk S., Weber G., Weller E., Böttcher H., Schumacher J., Vetter J. (2003): Dynamik der Kohlenstoffvorräte in den Wäldern Thüringens. Abschlussbericht zur 1. Phase des BMBF-Projektes “Modelluntersuchung zur Umsetzung des Kyoto-Protokolls”. Jena, Max-Planck Institute for Biogeochemistry: 328.
Wirth C., Schumacher J., Schulze E.-D. (2004): Generic biomass functions for Norway spruce in Central Europe--a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology, 24, 121-139
Wutzler Thomas, Wirth Christian, Schumacher Jens (2008): Generic biomass functions for Common beech ( Fagus sylvatica ) in Central Europe: predictions and components of uncertainty. Canadian Journal of Forest Research, 38, 1661-1675
Zianis Dimitris, Mencuccini Maurizio (2003): Aboveground biomass relationships for beech ( Fagus moesiaca Cz.) trees in Vermio Mountain, Northern Greece, and generalised equations for Fagus sp.. Annals of Forest Science, 60, 439-448
Zianis D., Muukkonen P., Mäkipää R., Mencuccini M. (2005): Biomass and Stem Volume Equations for Tree Species in Europe. Silva Fennica, Monographs 4: 63.
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti