Utilization of STMS markers to verify admixture in clonal progenies of Acacia mapping populations and relabelling using assignment tests

https://doi.org/10.17221/103/2014-JFSCitation:Asif M.J., Ariffin M.A.T., Yit H.M., Wong M., Abdullah M.Z., Muhammad N., Ratnam W. (2015): Utilization of STMS markers to verify admixture in clonal progenies of Acacia mapping populations and relabelling using assignment tests. J. For. Sci., 61: 200-209.
download PDF

Clonal propagation is widely used for Acacia breeding and commercial planting. When a large number of clones are handled, problems with mixings are commonly confronted. Detection of admixture in Acacia clones based on morphology particularly at seedling stage is not feasible. However, molecular markers are commonly used to test the genetic fidelity of planting materials. This paper reports the detection of mislabelling in Acacia clonal progenies using a sequence tagged microsatellite (STMS) genetic marker system. Progenies from two mapping populations were clonally propagated and field planted for phenotypic and genotypic evaluation at three locations in Malaysia: (a) Forest Research Institute Malaysia field station at Segamat, Johor, (b) Borneo Tree Seeds and Seedlings Supplies Sdn, Bhd. (BTS) field trial site at Bintulu, Sarawak and (c) Asiaprima RCF field trial site at Lancang, Pahang. During field planting mislabelling was reported at Segamat, Johor and similar was suspected for Bintulu, Sarawak. Screening revealed mislabelling events in both populations. A total of 18.52% mislabelling incidences were detected from both sites, of which 17.39% of mislabelling was detected for fibre length cross and 20% for wood density cross. The assignment test efficiently reestablished the mislabelled ramets to the respective clones. Future studies should be focused on the utilization of a higher number of markers, e.g. SSR or SNPs to increase a discrimination power. A high number of SNPs can be generated within a short period of time compared to SSR, but SNPs could be cost inhibitory. Multiplexing microsatellite combinations along with sample bulking will further reduce the processing time when screening large populations. The use of assignment test would efficiently assign mislabelled individuals to the respective clones. It is concluded that checking for mislabelling is imperative for future breeding and for analyses such as QTL mapping where a correlation between genotypic and phenotypic data is determined.

Anonymous (2009): Prepare for the deluge. Nature Biotechnology, 26: 1099.
Aziah M.Y., McKellar D., Fadhilah Z., Halilah A.K., Haliza I. (1999): Establishing protocol for commercial micropropagation of Acacia mangium × Acacia auriculiformis. Journal of Tropical Forest Science, 11: 148–156.
BONIN A., BELLEMAIN E., BRONKEN EIDESEN P., POMPANON F., BROCHMANN C., TABERLET P. (2004): How to track and assess genotyping errors in population genetics studies. Molecular Ecology, 13, 3261-3273  https://doi.org/10.1111/j.1365-294X.2004.02346.x
Butcher P. A., Decroocq S., Gray Y., Moran G. F. (2000): Development, inheritance and cross-species amplification of microsatellite markers from Acacia mangium. TAG Theoretical and Applied Genetics, 101, 1282-1290  https://doi.org/10.1007/s001220051608
BUTCHER* , , MORAN , PERKINS (1998): RFLP diversity in the nuclear genome of Acacia mangium. Heredity, 81, 205-213  https://doi.org/10.1046/j.1365-2540.1998.00392.x
Cornuet J.M., Piry S., Luikart G., Estoup A., Solignac M. (1999): New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics, 153: 1989–2000.
Cryer N. C., Fenn M. G. E., Turnbull C. J., Wilkinson M. J. (2006): Allelic Size Standards and Reference Genotypes to Unify International Cocoa (Theobroma cacao L.) Microsatellite Data. Genetic Resources and Crop Evolution, 53, 1643-1652  https://doi.org/10.1007/s10722-005-1286-9
Hancock J.M. (1999): Microsatellites and other simple sequences: Genomic context and mutational mechanisms. In: Goldstein D.B., Schlötterer C. (eds): Microsatellites: Evolution and Applications. New York, Oxford University Press: 1–9.
Hardiyanto E.B. (2014): Challenges for Acacia Breeders. In: Sustaining the future of Acacia plantation forestry. Hue, Mar 18–21, 2014: 2–4.
Harju Anni, Muona Outi (1989): Background pollination in Pinus sylvestris seed orchards. Scandinavian Journal of Forest Research, 4, 513-520  https://doi.org/10.1080/02827588909382584
Jahan M. S., Ahsan L., Noori A., Quaiyyum M.A. (2008): Process for the production of dissolving pulp from Trema orientalis (NALITA): by pre-hydrolysis kraft and soda-ethylenediamine (EDA): process. BioResources, 3: 816–828.
Jones Megan E., Shepherd Mervyn, Henry Robert, Delves Angela (2007): Pollen flow in Eucalyptus grandis determined by paternity analysis using microsatellite markers. Tree Genetics & Genomes, 4, 37-47  https://doi.org/10.1007/s11295-007-0086-0
Kawauchi H., Goto S. (1999): Monitoring clonal management in nematode-resistant Japanese black pine seed orchard in Kagoshima Prefecture. Journal of Japanese Forest Society, 81: 338–340.
Kijkar S. (1992): Handbook. Vegetative Propagation of Acacia mangium × Acacia auriculiformis. ASEAN-Canada Forest Tree Seed Centre Saraburi, Thailand: 9–12.
Kojima Miho, Yamamoto Hiroyuki, Okumura Kayo, Ojio Yasuhisa, Yoshida Masato, Okuyama Takashi, Ona Toshihiro, Matsune Kenji, Nakamura Kentaro, Ide Yuji, Marsoem Sri Nugroho, Sahri Mohd Hamami, Hadi Yusuf Sudo (2009): Effect of the lateral growth rate on wood properties in fast-growing hardwood species. Journal of Wood Science, 55, 417-424  https://doi.org/10.1007/s10086-009-1057-x
Liesebach H., Schneck V. (2007): Genetische Charakterisierung von Klonen der Gattung Populusim Erhaltungsmutterquartier Waldsieversdorf. In: Jahresbericht. Hamburg, Bundesforschungsanstalt für Forstund Holzwirtschaft: 41–42.
Liesebach Heike, Schneck Volker, Ewald Elke (2010): Clonal fingerprinting in the genus Populus L. by nuclear microsatellite loci regarding differences between sections, species and hybrids. Tree Genetics & Genomes, 6, 259-269  https://doi.org/10.1007/s11295-009-0246-5
Liew W.Y. (2007): Development and utilisation of EST-SSR markers for genetic linkage mapping in Acacia mangium × Acacia auriculiformis hybrid. [M.Sc. Thesis.] Bangi, Universiti Kebangsaan Malaysia: 130.
Liu K., Muse S. V. (): PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 21, 2128-2129  https://doi.org/10.1093/bioinformatics/bti282
Midgley S. (2014): Global use of Acacia – why we are here. In: Hardiyanto E.B.: Sustaining the future of Acacia plantation Forestry held in Hue. Vietnam, Mar 18–21, 2014: 19.
Millar M. A., Byrne M., Nuberg I., Sedgley M. (2008): High outcrossing and random pollen dispersal in a planted stand of Acacia saligna subsp. saligna revealed by paternity analysis using microsatellites. Tree Genetics & Genomes, 4, 367-377  https://doi.org/10.1007/s11295-007-0115-z
Moriguchi Yoshinari, Tani Naoki, Itoo Sinji, Kanehira Fuminori, Tanaka Kouji, Yomogida Hidetoshi, Taira Hideaki, Tsumura Yoshihiko (2005): Gene flow and mating system in five Cryptomeria japonica D. Don seed orchards as revealed by analysis of microsatellite markers. Tree Genetics & Genomes, 1, 174-183  https://doi.org/10.1007/s11295-005-0023-z
Moriya Shigeki, Iwanami Hiroshi, Okada Kazuma, Yamamoto Toshiya, Abe Kazuyuki (2011): A practical method for apple cultivar identification and parent-offspring analysis using simple sequence repeat markers. Euphytica, 177, 135-150  https://doi.org/10.1007/s10681-010-0295-8
Nei M., Takezaki N. (1983): Estimation of genetic distances and phylogenetic trees from DNA analysis. In: Proceeding of 5th World Congress on Genetic and Application in Livestock Production, 21: 405–412.
Ng C.H., Koh S.C., Lee S.L., Ng K.S.K., Alexis M., Norwati M., Wickneswari R. (2005): Isolation of 15 polymorphic microsatellite loci in Acacia hybrid (A. mangium × A. auriculiformis): Molecular Ecology Notes, 5: 572–575.
Nuray K., Kani I. (2009): Genetic identification of clones and the genetic structure of seed crops in a Pinus brutia seed orchard. Turkish Journal of Agriculture and Forestry, 34: 127–134.
PAETKAU DAVID (2004): THE OPTIMAL NUMBER OF MARKERS IN GENETIC CAPTURE–MARK–RECAPTURE STUDIES. Journal of Wildlife Management, 68, 449-452  https://doi.org/10.2193/0022-541X(2004)068[0449:TONOMI]2.0.CO;2
PAETKAU D., CALVERT W., STIRLING I., STROBECK C. (1995): Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology, 4, 347-354  https://doi.org/10.1111/j.1365-294X.1995.tb00227.x
Paetkau David, Slade Robert, Burden Michael, Estoup Arnaud (2004): Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology, 13, 55-65  https://doi.org/10.1046/j.1365-294X.2004.02008.x
Paetkau D., Waits L.P., Clarkson P.L., Craighead L., Strobeck C. (1997): An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae): populations. Genetics, 147: 1943–1957.
Piry S. (2004): GENECLASS2: A Software for Genetic Assignment and First-Generation Migrant Detection. Journal of Heredity, 95, 536-539  https://doi.org/10.1093/jhered/esh074
Potter K., Rimbawanto A., Beadle C. (2006): Heart rot and root rot in tropical Acacia plantations. In: Proceedings of a Workshop, Yogyakarta, Feb 7–9, 2006: 124–127.
Rannala B., Mountain J. L. (1997): Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences, 94, 9197-9201  https://doi.org/10.1073/pnas.94.17.9197
Rohlf F.J. (1990): Numerical Taxonomy and Multivariate Analysis NTSYS-pc. New York, State University of New York: 44.
Scheepers D., Elow M.C., Briquet M. (1997): Use of RAPD patterns for clone verification provenance relationships in Norway spruce (Picea abies): Theoretical and Applied Genetics, 94: 480–485.
Sedgley M., Harbard J., Smith R.M. (1992): Hybridization techniques for Acacias. Canberra, ACIAR Technical Reports No. 20: 13
TABERLET PIERRE, LUIKART GORDON (1999): Non-invasive genetic sampling and individual identification. Biological Journal of the Linnean Society, 68, 41-55  https://doi.org/10.1111/j.1095-8312.1999.tb01157.x
Jemmy Takrama, Ji Kun, Lyndel Meinhardt, Sue Mischke, Stephen Y. Opoku, Francis K. Padi, Dapeng Zhang (2014): Verification of genetic identity of introduced cacao germplasm in Ghana using single nucleotide polymorphism (SNP) markers. African Journal of Biotechnology, 13, 2127-2136  https://doi.org/10.5897/AJB2013.13331
Tripathi S. B., Mathish N. V., Gurumurthi K. (2006): Use of Genetic Markers in the Management of Micropropagated Eucalyptus Germplasm. New Forests, 31, 361-372  https://doi.org/10.1007/s11056-005-8677-9
Tumbull J.W., Crompton H.R., Pinyopusarerk K. (1997): Recent Developments in Acacia Planting: In: Proceedings of an International Workshop Held in Hanoi. Vietnam, Oct 27–30, 1997: 211–215.
Wheeler N. C., Jech K. S. (1992): The use of electrophoretic markers in seed orchard research. New Forests, 6, 311-328  https://doi.org/10.1007/BF00120650
Wickneswari R., Koh S.C., Thi B.K., Low C.Y., Tan E. (2003): Estimation of genetic relatedness among Acacia mangium × Acacia auriculiformis hybrids. Malaysian Applied Biology, 32: 73–79.
Wickneswari R., Norwati M. (1992): Pod production and hybrid seed yield in Acacia mangium and Acacia auriculiformis. In: Caron L.T., Aken K.M. (eds): Breeding Technologies for Tropical Acacias. ACIAR Canberra Proceedings, 37: 57–62.
Yap S.K. (1986): Introduction of Acacia species to Peninsular Malaysia. In: Turnbull J.W. (ed.): Australian Acacias in Developing Countries. International Workshop held at the forestry training centre gymple, Canberra, Aug 4–7, 1986: 151–153
Zhang Dapeng, Mischke Sue, Goenaga Ricardo, Hemeida Alaa A., Saunders James A. (2006): Accuracy and Reliability of High-Throughput Microsatellite Genotyping for Cacao Clone Identification. Crop Science, 46, 2084-  https://doi.org/10.2135/cropsci2006.01.0004
Zhang J., Fan Z., Gao Y., Xiao Z., Li C., An Q., Cheng S. (2001): Detecting Bladder Cancer in the Chinese by Microsatellite Analysis: Ethnic and Etiologic Considerations. JNCI Journal of the National Cancer Institute, 93, 45-50  https://doi.org/10.1093/jnci/93.1.45
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti